Constructing fading histograms from data streams
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/21260 |
Resumo: | The ability to collect data is changing drastically. Nowadays, data are gathered in the form of transient and finite data streams. Memory restrictions preclude keeping all received data in memory. When dealing with massive data streams, it is mandatory to create compact representations of data, also known as synopses structures or summaries. Reducing memory occupancy is of utmost importance when handling a huge amount of data. This paper addresses the problem of constructing histograms from data streams under error constraints. When constructing online histograms from data streams there are two main characteristics to embrace: the updating facility and the error of the histogram. Moreover, in dynamic environments, besides the need of compact summaries to capture the most important properties of data, it is also essential to forget old data. Therefore, this paper presents sliding histograms and fading histograms, an abrupt and a smooth strategies to forget outdated data. |
id |
RCAP_d8eb32c7a8b86cdb3eb94afc0980eacc |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/21260 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Constructing fading histograms from data streamsData streamsOnline histogramsError constraintsFading histogramsThe ability to collect data is changing drastically. Nowadays, data are gathered in the form of transient and finite data streams. Memory restrictions preclude keeping all received data in memory. When dealing with massive data streams, it is mandatory to create compact representations of data, also known as synopses structures or summaries. Reducing memory occupancy is of utmost importance when handling a huge amount of data. This paper addresses the problem of constructing histograms from data streams under error constraints. When constructing online histograms from data streams there are two main characteristics to embrace: the updating facility and the error of the histogram. Moreover, in dynamic environments, besides the need of compact summaries to capture the most important properties of data, it is also essential to forget old data. Therefore, this paper presents sliding histograms and fading histograms, an abrupt and a smooth strategies to forget outdated data.Springer2017-12-21T14:35:33Z2014-01-01T00:00:00Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/21260eng2192-636010.1007/s13748-014-0050-9Sebastião, RaquelGama, JoãoMendonça, Teresainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:36:52Zoai:ria.ua.pt:10773/21260Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:53:51.508951Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Constructing fading histograms from data streams |
title |
Constructing fading histograms from data streams |
spellingShingle |
Constructing fading histograms from data streams Sebastião, Raquel Data streams Online histograms Error constraints Fading histograms |
title_short |
Constructing fading histograms from data streams |
title_full |
Constructing fading histograms from data streams |
title_fullStr |
Constructing fading histograms from data streams |
title_full_unstemmed |
Constructing fading histograms from data streams |
title_sort |
Constructing fading histograms from data streams |
author |
Sebastião, Raquel |
author_facet |
Sebastião, Raquel Gama, João Mendonça, Teresa |
author_role |
author |
author2 |
Gama, João Mendonça, Teresa |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Sebastião, Raquel Gama, João Mendonça, Teresa |
dc.subject.por.fl_str_mv |
Data streams Online histograms Error constraints Fading histograms |
topic |
Data streams Online histograms Error constraints Fading histograms |
description |
The ability to collect data is changing drastically. Nowadays, data are gathered in the form of transient and finite data streams. Memory restrictions preclude keeping all received data in memory. When dealing with massive data streams, it is mandatory to create compact representations of data, also known as synopses structures or summaries. Reducing memory occupancy is of utmost importance when handling a huge amount of data. This paper addresses the problem of constructing histograms from data streams under error constraints. When constructing online histograms from data streams there are two main characteristics to embrace: the updating facility and the error of the histogram. Moreover, in dynamic environments, besides the need of compact summaries to capture the most important properties of data, it is also essential to forget old data. Therefore, this paper presents sliding histograms and fading histograms, an abrupt and a smooth strategies to forget outdated data. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01T00:00:00Z 2014 2017-12-21T14:35:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/21260 |
url |
http://hdl.handle.net/10773/21260 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2192-6360 10.1007/s13748-014-0050-9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137590529490944 |