The geometry of nesting problems: A tutorial

Detalhes bibliográficos
Autor(a) principal: José Fernando Oliveira
Data de Publicação: 2008
Outros Autores: Julia A. Bennel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/1549
Resumo: Cutting and packing problems involving irregular shapes is an important problem variant with a wide variety of industrial applications. Despite its relevance to industry, research publications are relatively low when compared to other cutting and packing problems. One explanation offered is the perceived difficulty and substantial time investment of developing a geometric tool box to assess computer generated solutions. In this paper we set out to provide a tutorial covering the core geometric methodologies currently employed by researchers in cutting and packing of irregular shapes. The paper is not designed to be an exhaustive survey of the literature but instead will draw on the literature to illustrate the theory and implementation of the approaches. We aim to provide a sufficiently instructive description to equip new and current researchers in the area to select the most appropriate methodology for their needs.
id RCAP_d90475d369382fe157efc06c453fac5b
oai_identifier_str oai:repositorio.inesctec.pt:123456789/1549
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The geometry of nesting problems: A tutorialCutting and packing problems involving irregular shapes is an important problem variant with a wide variety of industrial applications. Despite its relevance to industry, research publications are relatively low when compared to other cutting and packing problems. One explanation offered is the perceived difficulty and substantial time investment of developing a geometric tool box to assess computer generated solutions. In this paper we set out to provide a tutorial covering the core geometric methodologies currently employed by researchers in cutting and packing of irregular shapes. The paper is not designed to be an exhaustive survey of the literature but instead will draw on the literature to illustrate the theory and implementation of the approaches. We aim to provide a sufficiently instructive description to equip new and current researchers in the area to select the most appropriate methodology for their needs.2017-11-16T12:30:39Z2008-01-01T00:00:00Z2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/1549engJosé Fernando OliveiraJulia A. Bennelinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:19:43Zoai:repositorio.inesctec.pt:123456789/1549Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:08.778159Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The geometry of nesting problems: A tutorial
title The geometry of nesting problems: A tutorial
spellingShingle The geometry of nesting problems: A tutorial
José Fernando Oliveira
title_short The geometry of nesting problems: A tutorial
title_full The geometry of nesting problems: A tutorial
title_fullStr The geometry of nesting problems: A tutorial
title_full_unstemmed The geometry of nesting problems: A tutorial
title_sort The geometry of nesting problems: A tutorial
author José Fernando Oliveira
author_facet José Fernando Oliveira
Julia A. Bennel
author_role author
author2 Julia A. Bennel
author2_role author
dc.contributor.author.fl_str_mv José Fernando Oliveira
Julia A. Bennel
description Cutting and packing problems involving irregular shapes is an important problem variant with a wide variety of industrial applications. Despite its relevance to industry, research publications are relatively low when compared to other cutting and packing problems. One explanation offered is the perceived difficulty and substantial time investment of developing a geometric tool box to assess computer generated solutions. In this paper we set out to provide a tutorial covering the core geometric methodologies currently employed by researchers in cutting and packing of irregular shapes. The paper is not designed to be an exhaustive survey of the literature but instead will draw on the literature to illustrate the theory and implementation of the approaches. We aim to provide a sufficiently instructive description to equip new and current researchers in the area to select the most appropriate methodology for their needs.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01T00:00:00Z
2008
2017-11-16T12:30:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/1549
url http://repositorio.inesctec.pt/handle/123456789/1549
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131598541553664