Predictive accuracy of alternative autoregressive conditional heteroskedasticity models

Detalhes bibliográficos
Autor(a) principal: Garcia, Carlos Diogo Monteiro
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/3493
Resumo: The main objective of this thesis is to compare some of the most popular volatility models, in terms of their predictive accuracy. Specifically, we will use three autoregressive conditional heteroskedasticity (ARCH) models, GARCH, EGARCH and GJR. In order to compare these models, we will use some of the most recent predictive accuracy tests: Diebold-Mariano (1995), modified Diebold-Mariano (1997), modified Morgan-Granger-Newbold (1997), Harvey-Leybourne-Newbold (1998), Harvey-Newbold (2000) and Hansen (2005). We will consider the CAC40, FTSE100, NIKKEI225 and S&p500 indexes in our analysis, from January 1, 1995 through December 31, 2009. The results obtained, although not being conclusive, point out to a superior predictive accuracy of asymmetric models (EGARCH and GJR), in relation to GARCH. The fact that we can’t clearly point out the best model, between the asymmetric ones, may be explained by the several episodes of high volatility that toke place over the last two decades.
id RCAP_d911fc57b7e0f5a4d929d92f6967ecc8
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/3493
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predictive accuracy of alternative autoregressive conditional heteroskedasticity modelsForecasting volatilityARCH modelsPredictive accuracy testsModel comparisonPrevisão de volatilidadeModelos ARCHTestes de capacidade preditivaComparação de modelosThe main objective of this thesis is to compare some of the most popular volatility models, in terms of their predictive accuracy. Specifically, we will use three autoregressive conditional heteroskedasticity (ARCH) models, GARCH, EGARCH and GJR. In order to compare these models, we will use some of the most recent predictive accuracy tests: Diebold-Mariano (1995), modified Diebold-Mariano (1997), modified Morgan-Granger-Newbold (1997), Harvey-Leybourne-Newbold (1998), Harvey-Newbold (2000) and Hansen (2005). We will consider the CAC40, FTSE100, NIKKEI225 and S&p500 indexes in our analysis, from January 1, 1995 through December 31, 2009. The results obtained, although not being conclusive, point out to a superior predictive accuracy of asymmetric models (EGARCH and GJR), in relation to GARCH. The fact that we can’t clearly point out the best model, between the asymmetric ones, may be explained by the several episodes of high volatility that toke place over the last two decades.Esta tese tem como objectivo comparar alguns do mais populares modelos de volatilidade, em termos da sua capacidade preditiva. Especificamente, iremos usar três modelos auto-regressivos de heterocedasticidade condicional, GARCH, EGARCH e GJR. Para proceder à comparação entre modelos, iremos servir-nos de alguns dos mais recentes testes de capacidade preditiva: Diebold-Mariano (1995), Diebold-Mariano modificado (1997), Morgan-Granger-Newbold modificado (1997), Harvey-Leybourne-Newbold (1998), Harvey-Newbold (2000) e Hansen (2005). A nossa análise irá ser feita com base nos índices CAC40, FTSE100, NIKKEI225 e S&P500, para o período de 1 de Janeiro de 1995 até 31 de Dezembro de 2009. Os resultados obtidos, embora não sendo conclusivos, apontam para uma superior capacidade preditiva dos modelos assimétricos (EGARCH e GJR), face ao GARCH. O facto de não conseguirmos apontar claramente o melhor modelo, de entre os modelos assimétricos, pode ser explicado pelos diversos episódios de volatilidade elevada que tiveram lugar nas últimas duas décadas.2012-03-28T15:18:02Z2012-03-28T00:00:00Z2012-03-282010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/3493engGarcia, Carlos Diogo Monteiroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:51:11Zoai:repositorio.iscte-iul.pt:10071/3493Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:25:20.579611Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predictive accuracy of alternative autoregressive conditional heteroskedasticity models
title Predictive accuracy of alternative autoregressive conditional heteroskedasticity models
spellingShingle Predictive accuracy of alternative autoregressive conditional heteroskedasticity models
Garcia, Carlos Diogo Monteiro
Forecasting volatility
ARCH models
Predictive accuracy tests
Model comparison
Previsão de volatilidade
Modelos ARCH
Testes de capacidade preditiva
Comparação de modelos
title_short Predictive accuracy of alternative autoregressive conditional heteroskedasticity models
title_full Predictive accuracy of alternative autoregressive conditional heteroskedasticity models
title_fullStr Predictive accuracy of alternative autoregressive conditional heteroskedasticity models
title_full_unstemmed Predictive accuracy of alternative autoregressive conditional heteroskedasticity models
title_sort Predictive accuracy of alternative autoregressive conditional heteroskedasticity models
author Garcia, Carlos Diogo Monteiro
author_facet Garcia, Carlos Diogo Monteiro
author_role author
dc.contributor.author.fl_str_mv Garcia, Carlos Diogo Monteiro
dc.subject.por.fl_str_mv Forecasting volatility
ARCH models
Predictive accuracy tests
Model comparison
Previsão de volatilidade
Modelos ARCH
Testes de capacidade preditiva
Comparação de modelos
topic Forecasting volatility
ARCH models
Predictive accuracy tests
Model comparison
Previsão de volatilidade
Modelos ARCH
Testes de capacidade preditiva
Comparação de modelos
description The main objective of this thesis is to compare some of the most popular volatility models, in terms of their predictive accuracy. Specifically, we will use three autoregressive conditional heteroskedasticity (ARCH) models, GARCH, EGARCH and GJR. In order to compare these models, we will use some of the most recent predictive accuracy tests: Diebold-Mariano (1995), modified Diebold-Mariano (1997), modified Morgan-Granger-Newbold (1997), Harvey-Leybourne-Newbold (1998), Harvey-Newbold (2000) and Hansen (2005). We will consider the CAC40, FTSE100, NIKKEI225 and S&p500 indexes in our analysis, from January 1, 1995 through December 31, 2009. The results obtained, although not being conclusive, point out to a superior predictive accuracy of asymmetric models (EGARCH and GJR), in relation to GARCH. The fact that we can’t clearly point out the best model, between the asymmetric ones, may be explained by the several episodes of high volatility that toke place over the last two decades.
publishDate 2010
dc.date.none.fl_str_mv 2010
2012-03-28T15:18:02Z
2012-03-28T00:00:00Z
2012-03-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/3493
url http://hdl.handle.net/10071/3493
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134816605569024