Predictive accuracy of alternative autoregressive conditional heteroskedasticity models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/3493 |
Resumo: | The main objective of this thesis is to compare some of the most popular volatility models, in terms of their predictive accuracy. Specifically, we will use three autoregressive conditional heteroskedasticity (ARCH) models, GARCH, EGARCH and GJR. In order to compare these models, we will use some of the most recent predictive accuracy tests: Diebold-Mariano (1995), modified Diebold-Mariano (1997), modified Morgan-Granger-Newbold (1997), Harvey-Leybourne-Newbold (1998), Harvey-Newbold (2000) and Hansen (2005). We will consider the CAC40, FTSE100, NIKKEI225 and S&p500 indexes in our analysis, from January 1, 1995 through December 31, 2009. The results obtained, although not being conclusive, point out to a superior predictive accuracy of asymmetric models (EGARCH and GJR), in relation to GARCH. The fact that we can’t clearly point out the best model, between the asymmetric ones, may be explained by the several episodes of high volatility that toke place over the last two decades. |
id |
RCAP_d911fc57b7e0f5a4d929d92f6967ecc8 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/3493 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predictive accuracy of alternative autoregressive conditional heteroskedasticity modelsForecasting volatilityARCH modelsPredictive accuracy testsModel comparisonPrevisão de volatilidadeModelos ARCHTestes de capacidade preditivaComparação de modelosThe main objective of this thesis is to compare some of the most popular volatility models, in terms of their predictive accuracy. Specifically, we will use three autoregressive conditional heteroskedasticity (ARCH) models, GARCH, EGARCH and GJR. In order to compare these models, we will use some of the most recent predictive accuracy tests: Diebold-Mariano (1995), modified Diebold-Mariano (1997), modified Morgan-Granger-Newbold (1997), Harvey-Leybourne-Newbold (1998), Harvey-Newbold (2000) and Hansen (2005). We will consider the CAC40, FTSE100, NIKKEI225 and S&p500 indexes in our analysis, from January 1, 1995 through December 31, 2009. The results obtained, although not being conclusive, point out to a superior predictive accuracy of asymmetric models (EGARCH and GJR), in relation to GARCH. The fact that we can’t clearly point out the best model, between the asymmetric ones, may be explained by the several episodes of high volatility that toke place over the last two decades.Esta tese tem como objectivo comparar alguns do mais populares modelos de volatilidade, em termos da sua capacidade preditiva. Especificamente, iremos usar três modelos auto-regressivos de heterocedasticidade condicional, GARCH, EGARCH e GJR. Para proceder à comparação entre modelos, iremos servir-nos de alguns dos mais recentes testes de capacidade preditiva: Diebold-Mariano (1995), Diebold-Mariano modificado (1997), Morgan-Granger-Newbold modificado (1997), Harvey-Leybourne-Newbold (1998), Harvey-Newbold (2000) e Hansen (2005). A nossa análise irá ser feita com base nos índices CAC40, FTSE100, NIKKEI225 e S&P500, para o período de 1 de Janeiro de 1995 até 31 de Dezembro de 2009. Os resultados obtidos, embora não sendo conclusivos, apontam para uma superior capacidade preditiva dos modelos assimétricos (EGARCH e GJR), face ao GARCH. O facto de não conseguirmos apontar claramente o melhor modelo, de entre os modelos assimétricos, pode ser explicado pelos diversos episódios de volatilidade elevada que tiveram lugar nas últimas duas décadas.2012-03-28T15:18:02Z2012-03-28T00:00:00Z2012-03-282010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/3493engGarcia, Carlos Diogo Monteiroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:51:11Zoai:repositorio.iscte-iul.pt:10071/3493Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:25:20.579611Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predictive accuracy of alternative autoregressive conditional heteroskedasticity models |
title |
Predictive accuracy of alternative autoregressive conditional heteroskedasticity models |
spellingShingle |
Predictive accuracy of alternative autoregressive conditional heteroskedasticity models Garcia, Carlos Diogo Monteiro Forecasting volatility ARCH models Predictive accuracy tests Model comparison Previsão de volatilidade Modelos ARCH Testes de capacidade preditiva Comparação de modelos |
title_short |
Predictive accuracy of alternative autoregressive conditional heteroskedasticity models |
title_full |
Predictive accuracy of alternative autoregressive conditional heteroskedasticity models |
title_fullStr |
Predictive accuracy of alternative autoregressive conditional heteroskedasticity models |
title_full_unstemmed |
Predictive accuracy of alternative autoregressive conditional heteroskedasticity models |
title_sort |
Predictive accuracy of alternative autoregressive conditional heteroskedasticity models |
author |
Garcia, Carlos Diogo Monteiro |
author_facet |
Garcia, Carlos Diogo Monteiro |
author_role |
author |
dc.contributor.author.fl_str_mv |
Garcia, Carlos Diogo Monteiro |
dc.subject.por.fl_str_mv |
Forecasting volatility ARCH models Predictive accuracy tests Model comparison Previsão de volatilidade Modelos ARCH Testes de capacidade preditiva Comparação de modelos |
topic |
Forecasting volatility ARCH models Predictive accuracy tests Model comparison Previsão de volatilidade Modelos ARCH Testes de capacidade preditiva Comparação de modelos |
description |
The main objective of this thesis is to compare some of the most popular volatility models, in terms of their predictive accuracy. Specifically, we will use three autoregressive conditional heteroskedasticity (ARCH) models, GARCH, EGARCH and GJR. In order to compare these models, we will use some of the most recent predictive accuracy tests: Diebold-Mariano (1995), modified Diebold-Mariano (1997), modified Morgan-Granger-Newbold (1997), Harvey-Leybourne-Newbold (1998), Harvey-Newbold (2000) and Hansen (2005). We will consider the CAC40, FTSE100, NIKKEI225 and S&p500 indexes in our analysis, from January 1, 1995 through December 31, 2009. The results obtained, although not being conclusive, point out to a superior predictive accuracy of asymmetric models (EGARCH and GJR), in relation to GARCH. The fact that we can’t clearly point out the best model, between the asymmetric ones, may be explained by the several episodes of high volatility that toke place over the last two decades. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2012-03-28T15:18:02Z 2012-03-28T00:00:00Z 2012-03-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/3493 |
url |
http://hdl.handle.net/10071/3493 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134816605569024 |