Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts

Detalhes bibliográficos
Autor(a) principal: Gouveia, M
Data de Publicação: 2019
Outros Autores: Brindley, P, Rinaldi, G, Gärtner, F, Costa, J, Vale, N
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/138979
Resumo: Background: Infections classified as group 1 biological carcinogens include the helminthiases caused by Schistosoma haematobium and Opisthorchis viverrini. The molecular mediators underlying the infection with these parasites and cancer remain unclear. Although carcinogenesis is a multistep process, we have postulated that these parasites release metabolites including oxysterols and estrogen-like metabolites that interact with host cell DNA. How and why the parasite produce/excrete these metabolites remain unclear. A gene encoding a CYP enzyme was identified in schistosomes and opisthorchiids. Therefore, it is reasonable hypothesized that CYP 450 might play a role in generation of pro-inflammatory and potentially carcinogenic compounds produced by helminth parasites such as oxysterols and catechol estrogens. Here, we performed enzymatic assays using several isoforms of CYP 450 as CYP1A1, 2E1 and 3A4 which are involved in the metabolism of chemical carcinogens that have been associated with several cancer. The main aim was the analysis of the role of these enzymes in production of helminth-associated metabolites and DNA-adducts. Method: The effect of cytochrome P450 enzymes CYP 1A1, 2E1 and 3A4 during the interaction between DNA, glycocholic acid and taurochenodeoxycholate sodium on the formation of DNA-adducts and metabolites associated with urogenital schistosomiasis (UGS) and opisthorchiasis was investigated in vitro. Liquid chromatography/mass spectrometry was used to detect and identify metabolites. Main findings: Through the enzymatic assays we provide a deeper understanding of how metabolites derived from helminths are formed and the influence of CYP 450. The assays using compounds similar to those previously observed in helminths as glycocholic acid and taurochenodeoxycholate sodium, allowed the detection of metabolites in their oxidized form and their with DNA. Remarkably, these metabolites were previously associated with schistosomiaisis and opisthorchiasis. Thus, in the future, it may be possible to synthesize this type of metabolites through this methodology and use them in cell lines to clarify the carcinogenesis process associated with these diseases. Principal conclusions: Metabolites similar to those detected in helminths are able to interact with DNA in vitro leading to the formation of DNA adducts. These evidences supported the previous postulate that imply helminth-like metabolites as initiators of helminthiases-associated carcinogenesis. Nonetheless, studies including these kinds of metabolites and cell lines in order to evaluate its potential carcinogenic are required.
id RCAP_d91a4e5f910b982364e334793277f56c
oai_identifier_str oai:repositorio-aberto.up.pt:10216/138979
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adductsBackground: Infections classified as group 1 biological carcinogens include the helminthiases caused by Schistosoma haematobium and Opisthorchis viverrini. The molecular mediators underlying the infection with these parasites and cancer remain unclear. Although carcinogenesis is a multistep process, we have postulated that these parasites release metabolites including oxysterols and estrogen-like metabolites that interact with host cell DNA. How and why the parasite produce/excrete these metabolites remain unclear. A gene encoding a CYP enzyme was identified in schistosomes and opisthorchiids. Therefore, it is reasonable hypothesized that CYP 450 might play a role in generation of pro-inflammatory and potentially carcinogenic compounds produced by helminth parasites such as oxysterols and catechol estrogens. Here, we performed enzymatic assays using several isoforms of CYP 450 as CYP1A1, 2E1 and 3A4 which are involved in the metabolism of chemical carcinogens that have been associated with several cancer. The main aim was the analysis of the role of these enzymes in production of helminth-associated metabolites and DNA-adducts. Method: The effect of cytochrome P450 enzymes CYP 1A1, 2E1 and 3A4 during the interaction between DNA, glycocholic acid and taurochenodeoxycholate sodium on the formation of DNA-adducts and metabolites associated with urogenital schistosomiasis (UGS) and opisthorchiasis was investigated in vitro. Liquid chromatography/mass spectrometry was used to detect and identify metabolites. Main findings: Through the enzymatic assays we provide a deeper understanding of how metabolites derived from helminths are formed and the influence of CYP 450. The assays using compounds similar to those previously observed in helminths as glycocholic acid and taurochenodeoxycholate sodium, allowed the detection of metabolites in their oxidized form and their with DNA. Remarkably, these metabolites were previously associated with schistosomiaisis and opisthorchiasis. Thus, in the future, it may be possible to synthesize this type of metabolites through this methodology and use them in cell lines to clarify the carcinogenesis process associated with these diseases. Principal conclusions: Metabolites similar to those detected in helminths are able to interact with DNA in vitro leading to the formation of DNA adducts. These evidences supported the previous postulate that imply helminth-like metabolites as initiators of helminthiases-associated carcinogenesis. Nonetheless, studies including these kinds of metabolites and cell lines in order to evaluate its potential carcinogenic are required.BMC20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/138979eng1750-937810.1186/s13027-019-0257-2Gouveia, MBrindley, PRinaldi, GGärtner, FCosta, JVale, Ninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T16:12:54Zoai:repositorio-aberto.up.pt:10216/138979Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:39:09.738074Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts
title Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts
spellingShingle Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts
Gouveia, M
title_short Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts
title_full Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts
title_fullStr Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts
title_full_unstemmed Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts
title_sort Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts
author Gouveia, M
author_facet Gouveia, M
Brindley, P
Rinaldi, G
Gärtner, F
Costa, J
Vale, N
author_role author
author2 Brindley, P
Rinaldi, G
Gärtner, F
Costa, J
Vale, N
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Gouveia, M
Brindley, P
Rinaldi, G
Gärtner, F
Costa, J
Vale, N
description Background: Infections classified as group 1 biological carcinogens include the helminthiases caused by Schistosoma haematobium and Opisthorchis viverrini. The molecular mediators underlying the infection with these parasites and cancer remain unclear. Although carcinogenesis is a multistep process, we have postulated that these parasites release metabolites including oxysterols and estrogen-like metabolites that interact with host cell DNA. How and why the parasite produce/excrete these metabolites remain unclear. A gene encoding a CYP enzyme was identified in schistosomes and opisthorchiids. Therefore, it is reasonable hypothesized that CYP 450 might play a role in generation of pro-inflammatory and potentially carcinogenic compounds produced by helminth parasites such as oxysterols and catechol estrogens. Here, we performed enzymatic assays using several isoforms of CYP 450 as CYP1A1, 2E1 and 3A4 which are involved in the metabolism of chemical carcinogens that have been associated with several cancer. The main aim was the analysis of the role of these enzymes in production of helminth-associated metabolites and DNA-adducts. Method: The effect of cytochrome P450 enzymes CYP 1A1, 2E1 and 3A4 during the interaction between DNA, glycocholic acid and taurochenodeoxycholate sodium on the formation of DNA-adducts and metabolites associated with urogenital schistosomiasis (UGS) and opisthorchiasis was investigated in vitro. Liquid chromatography/mass spectrometry was used to detect and identify metabolites. Main findings: Through the enzymatic assays we provide a deeper understanding of how metabolites derived from helminths are formed and the influence of CYP 450. The assays using compounds similar to those previously observed in helminths as glycocholic acid and taurochenodeoxycholate sodium, allowed the detection of metabolites in their oxidized form and their with DNA. Remarkably, these metabolites were previously associated with schistosomiaisis and opisthorchiasis. Thus, in the future, it may be possible to synthesize this type of metabolites through this methodology and use them in cell lines to clarify the carcinogenesis process associated with these diseases. Principal conclusions: Metabolites similar to those detected in helminths are able to interact with DNA in vitro leading to the formation of DNA adducts. These evidences supported the previous postulate that imply helminth-like metabolites as initiators of helminthiases-associated carcinogenesis. Nonetheless, studies including these kinds of metabolites and cell lines in order to evaluate its potential carcinogenic are required.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/138979
url https://hdl.handle.net/10216/138979
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1750-9378
10.1186/s13027-019-0257-2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BMC
publisher.none.fl_str_mv BMC
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136298398646272