Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, Bangladesh
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/113704 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies |
id |
RCAP_d99f20c3ecdaed81918a0fe462dfd22e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/113704 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, BangladeshArtificial Neural NetworkConvolution Neural NetworkDeep LearningLandsat dataMachine LearningUrban Water bodiesDissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesWater has been playing a key role in human life since the dawn of civilization. It is an integral part of our lives. In recent years, water bodies specially, urban water bodies are in a poor state due to climate change and rapid urban expansion. Though some cities have become aware of this poor state of water bodies, many cities around the world are not contemplating this issue. Because less research has been conducted on water bodies than other land covers in urban areas like built-up. Besides, many advanced algorithms are currently being utilized in different fields, but in terms of water body study, these advancements are still missing. That is why this study aims at investigating the spatio-temporal changes in urban water bodies in Chittagong city using deep learning and freely available Landsat data. Looking at the significance of the study, firstly, as this study has adopted two different deep learning (DL) models and evaluated the performance, the findings can help to understand the suitability of applying deep learning algorithms to extract information from mid to low resolution imagery like Landsat. Secondly, this work will help us to understand why the conservation of the existing water bodies is so important. Finally, this study will encourage further research in the field of deep learning and water bodies by opening the door for monitoring other environmental resources.Pla Bañón, FilibertoFernández Beltrán, RubénCaetano, Mário Sílvio Rochinha de AndradeRUNEnan, Muhammad Esmat2021-03-11T11:55:51Z2021-03-052021-03-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/113704TID:202670821enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:56:36Zoai:run.unl.pt:10362/113704Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:42:22.120787Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, Bangladesh |
title |
Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, Bangladesh |
spellingShingle |
Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, Bangladesh Enan, Muhammad Esmat Artificial Neural Network Convolution Neural Network Deep Learning Landsat data Machine Learning Urban Water bodies |
title_short |
Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, Bangladesh |
title_full |
Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, Bangladesh |
title_fullStr |
Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, Bangladesh |
title_full_unstemmed |
Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, Bangladesh |
title_sort |
Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, Bangladesh |
author |
Enan, Muhammad Esmat |
author_facet |
Enan, Muhammad Esmat |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pla Bañón, Filiberto Fernández Beltrán, Rubén Caetano, Mário Sílvio Rochinha de Andrade RUN |
dc.contributor.author.fl_str_mv |
Enan, Muhammad Esmat |
dc.subject.por.fl_str_mv |
Artificial Neural Network Convolution Neural Network Deep Learning Landsat data Machine Learning Urban Water bodies |
topic |
Artificial Neural Network Convolution Neural Network Deep Learning Landsat data Machine Learning Urban Water bodies |
description |
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-11T11:55:51Z 2021-03-05 2021-03-05T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/113704 TID:202670821 |
url |
http://hdl.handle.net/10362/113704 |
identifier_str_mv |
TID:202670821 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138035100549120 |