Enhancing the selection of a model-based clustering with external categorical variables
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/9470 |
Resumo: | In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion. |
id |
RCAP_d99f6d8c7d357279dd98a54d181d5825 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/9470 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Enhancing the selection of a model-based clustering with external categorical variablesMixture modelsModel-based clusteringNumber of clustersPenalised criteriaCategorical variablesBICICLMixed type variables clusteringIn cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion.Springer2015-07-29T11:30:18Z2015-01-01T00:00:00Z20152019-05-07T12:31:10Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/9470eng1862-534710.1007/s11634-014-0177-3Baudry, J.-P.Cardoso, M. G. M. S.Celeux, G.Amorim, M. J.Ferreira, A. S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:58:49Zoai:repositorio.iscte-iul.pt:10071/9470Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:58:49Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Enhancing the selection of a model-based clustering with external categorical variables |
title |
Enhancing the selection of a model-based clustering with external categorical variables |
spellingShingle |
Enhancing the selection of a model-based clustering with external categorical variables Baudry, J.-P. Mixture models Model-based clustering Number of clusters Penalised criteria Categorical variables BIC ICL Mixed type variables clustering |
title_short |
Enhancing the selection of a model-based clustering with external categorical variables |
title_full |
Enhancing the selection of a model-based clustering with external categorical variables |
title_fullStr |
Enhancing the selection of a model-based clustering with external categorical variables |
title_full_unstemmed |
Enhancing the selection of a model-based clustering with external categorical variables |
title_sort |
Enhancing the selection of a model-based clustering with external categorical variables |
author |
Baudry, J.-P. |
author_facet |
Baudry, J.-P. Cardoso, M. G. M. S. Celeux, G. Amorim, M. J. Ferreira, A. S. |
author_role |
author |
author2 |
Cardoso, M. G. M. S. Celeux, G. Amorim, M. J. Ferreira, A. S. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Baudry, J.-P. Cardoso, M. G. M. S. Celeux, G. Amorim, M. J. Ferreira, A. S. |
dc.subject.por.fl_str_mv |
Mixture models Model-based clustering Number of clusters Penalised criteria Categorical variables BIC ICL Mixed type variables clustering |
topic |
Mixture models Model-based clustering Number of clusters Penalised criteria Categorical variables BIC ICL Mixed type variables clustering |
description |
In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-29T11:30:18Z 2015-01-01T00:00:00Z 2015 2019-05-07T12:31:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/9470 |
url |
http://hdl.handle.net/10071/9470 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1862-5347 10.1007/s11634-014-0177-3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546577835720704 |