Topologically protected states in the Lieb lattice

Detalhes bibliográficos
Autor(a) principal: Pimentel, Luísa Madail
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/25196
Resumo: In this thesis, we study the di erent types of boundary modes found in Lieb-type tight-binding Hamiltonians (of chains, ribbons and square clusters) that are strongly dependent on the symmetries present in the lattice. A new topological description is developed, with the aim of predicting the behaviour of these edge states. Due to the unconventional symmetry features of the Lieb unit cell, a generalization of the Zak's phase invariant and the chiral pairing operation is realized and implemented to sustain our topological characterization. Our analysis reveals that, while a large set of boundary states have a common well de ned topological phase transition, other edge states re ect a topological non-trivial phase for any nite value of the hopping parameters and are responsible for the appearance of corner states in the two dimensional Lieb rotated square lattice when reaching a higher symmetry class. The introduction of symmetry preserving local onsite potentials in these Lieb-type systems lifts the "degeneracy" of the topological transition point, inducing a "cascade" of topological transitions. This feature is enhanced with increasing lattice spatial dimensions.
id RCAP_d9c6a2cf149d0597529f0352b2ea5413
oai_identifier_str oai:ria.ua.pt:10773/25196
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Topologically protected states in the Lieb latticeEngenharia físicaSimetria (Física)Teoria de retículosTopologiaIn this thesis, we study the di erent types of boundary modes found in Lieb-type tight-binding Hamiltonians (of chains, ribbons and square clusters) that are strongly dependent on the symmetries present in the lattice. A new topological description is developed, with the aim of predicting the behaviour of these edge states. Due to the unconventional symmetry features of the Lieb unit cell, a generalization of the Zak's phase invariant and the chiral pairing operation is realized and implemented to sustain our topological characterization. Our analysis reveals that, while a large set of boundary states have a common well de ned topological phase transition, other edge states re ect a topological non-trivial phase for any nite value of the hopping parameters and are responsible for the appearance of corner states in the two dimensional Lieb rotated square lattice when reaching a higher symmetry class. The introduction of symmetry preserving local onsite potentials in these Lieb-type systems lifts the "degeneracy" of the topological transition point, inducing a "cascade" of topological transitions. This feature is enhanced with increasing lattice spatial dimensions.A presente dissertação tem como objetivo estudar os diferentes estados de fronteira existentes em Hamiltonianos de tight-binding de sistemas baseados na rede de Lieb, com grande dependência na simetria do sistema. No decurso da tese, uma descrição topológica é desenvolvida com o propósito de prever o comportamento destes estados fronteira. Devido às características pouco convencionais de simetria na célula unitária da rede de Lieb, foram formuladas generalizações do invariante topológico baseado na fase de Zak e da operação de emparelhamento quiral de estados, posteriormente implementadas de modo a sustentar a caracterização topológica dos sistemas estudados. A análise revela a existência de estados de fronteira com uma transição de fase topológica bem de finida e outros que refletem uma fase topológica não-trivial para qualquer escolha de parametros de salto. Estes últimos, são responsáveis pela criação de estados de canto na rede quadrada de Lieb rodada quando uma classe de simetria superior é alcançada. A partir da introdução de potenciais locais que preservam a simetria nos sistemas baseados na rede de Lieb, a "degenerescência" do ponto de transição topológica é levantada, induzindo uma "cascata" de transições topológicas. Este efeito é otimizado pelo aumento das dimensões espaciais do sistema.2018-07-262018-07-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/25196TID:202237087engPimentel, Luísa Madailinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:49:05Zoai:ria.ua.pt:10773/25196Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:35.210573Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Topologically protected states in the Lieb lattice
title Topologically protected states in the Lieb lattice
spellingShingle Topologically protected states in the Lieb lattice
Pimentel, Luísa Madail
Engenharia física
Simetria (Física)
Teoria de retículos
Topologia
title_short Topologically protected states in the Lieb lattice
title_full Topologically protected states in the Lieb lattice
title_fullStr Topologically protected states in the Lieb lattice
title_full_unstemmed Topologically protected states in the Lieb lattice
title_sort Topologically protected states in the Lieb lattice
author Pimentel, Luísa Madail
author_facet Pimentel, Luísa Madail
author_role author
dc.contributor.author.fl_str_mv Pimentel, Luísa Madail
dc.subject.por.fl_str_mv Engenharia física
Simetria (Física)
Teoria de retículos
Topologia
topic Engenharia física
Simetria (Física)
Teoria de retículos
Topologia
description In this thesis, we study the di erent types of boundary modes found in Lieb-type tight-binding Hamiltonians (of chains, ribbons and square clusters) that are strongly dependent on the symmetries present in the lattice. A new topological description is developed, with the aim of predicting the behaviour of these edge states. Due to the unconventional symmetry features of the Lieb unit cell, a generalization of the Zak's phase invariant and the chiral pairing operation is realized and implemented to sustain our topological characterization. Our analysis reveals that, while a large set of boundary states have a common well de ned topological phase transition, other edge states re ect a topological non-trivial phase for any nite value of the hopping parameters and are responsible for the appearance of corner states in the two dimensional Lieb rotated square lattice when reaching a higher symmetry class. The introduction of symmetry preserving local onsite potentials in these Lieb-type systems lifts the "degeneracy" of the topological transition point, inducing a "cascade" of topological transitions. This feature is enhanced with increasing lattice spatial dimensions.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-26
2018-07-26T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25196
TID:202237087
url http://hdl.handle.net/10773/25196
identifier_str_mv TID:202237087
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137640271839232