Network anomalies detection via event analysis and correlation by a smart system

Detalhes bibliográficos
Autor(a) principal: Cruz, Gonçalo Monteiro
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/27448
Resumo: The multidisciplinary of contemporary societies compel us to look at Information Technology (IT) systems as one of the most significant grants that we can remember. However, its increase implies a mandatory security force for users, a force in the form of effective and robust tools to combat cybercrime to which users, individual or collective, are ex-posed almost daily. Monitoring and detection of this kind of problem must be ensured in real-time, allowing companies to intervene fruitfully, quickly and in unison. The proposed framework is based on an organic symbiosis between credible, affordable, and effective open-source tools for data analysis, relying on Security Information and Event Management (SIEM), Big Data and Machine Learning (ML) techniques commonly applied for the development of real-time monitoring systems. Dissecting this framework, it is composed of a system based on SIEM methodology that provides monitoring of data in real-time and simultaneously saves the information, to assist forensic investigation teams. Secondly, the application of the Big Data concept is effective in manipulating and organising the flow of data. Lastly, the use of ML techniques that help create mechanisms to detect possible attacks or anomalies on the network. This framework is intended to provide a real-time analysis application in the institution ISCTE – Instituto Universitário de Lisboa (Iscte), offering a more complete, efficient, and secure monitoring of the data from the different devices comprising the network.
id RCAP_d9dec781d68090d68fc808ff93a0d7ec
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/27448
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Network anomalies detection via event analysis and correlation by a smart systemData monitoringAnomaly detectionAttack detectionSIEMBig dataML algorithmsMonitorização de dadosDeteção de anomaliasDeteção de ataquesSistemas SIEMAlgoritmos MLThe multidisciplinary of contemporary societies compel us to look at Information Technology (IT) systems as one of the most significant grants that we can remember. However, its increase implies a mandatory security force for users, a force in the form of effective and robust tools to combat cybercrime to which users, individual or collective, are ex-posed almost daily. Monitoring and detection of this kind of problem must be ensured in real-time, allowing companies to intervene fruitfully, quickly and in unison. The proposed framework is based on an organic symbiosis between credible, affordable, and effective open-source tools for data analysis, relying on Security Information and Event Management (SIEM), Big Data and Machine Learning (ML) techniques commonly applied for the development of real-time monitoring systems. Dissecting this framework, it is composed of a system based on SIEM methodology that provides monitoring of data in real-time and simultaneously saves the information, to assist forensic investigation teams. Secondly, the application of the Big Data concept is effective in manipulating and organising the flow of data. Lastly, the use of ML techniques that help create mechanisms to detect possible attacks or anomalies on the network. This framework is intended to provide a real-time analysis application in the institution ISCTE – Instituto Universitário de Lisboa (Iscte), offering a more complete, efficient, and secure monitoring of the data from the different devices comprising the network.A multidisciplinaridade das sociedades contemporâneas obriga-nos a perspetivar os sistemas informáticos como uma das maiores dádivas de que há memória. Todavia o seu incremento implica uma mandatária força de segurança para utilizadores, força essa em forma de ferramentas eficazes e robustas no combate ao cibercrime a que os utilizadores, individuais ou coletivos, são sujeitos quase diariamente. A monitorização e deteção deste tipo de problemas tem de ser assegurada em tempo real, permitindo assim, às empresas intervenções frutuosas, rápidas e em uníssono. A framework proposta é alicerçada numa simbiose orgânica entre ferramentas open source credíveis, acessíveis pecuniariamente e eficazes na monitorização de dados, recorrendo a um sistema baseado em técnicas de Security Information and Event Management (SIEM), Big Data e Machine Learning (ML) comumente aplicadas para a criação de sistemas de monitorização em tempo real. Dissecando esta framework, é composta pela metodologia SIEM que possibilita a monitorização de dados em tempo real e em simultâneo guardar a informação, com o objetivo de auxiliar as equipas de investigação forense. Em segundo lugar, a aplicação do conceito Big Data eficaz na manipulação e organização do fluxo dos dados. Por último, o uso de técnicas de ML que ajudam a criação de mecanismos de deteção de possíveis ataques ou anomalias na rede. Esta framework tem como objetivo uma aplicação de análise em tempo real na instituição ISCTE – Instituto Universitário de Lisboa (Iscte), apresentando uma monitorização mais completa, eficiente e segura dos dados dos diversos dispositivos presentes na mesma.2023-01-25T12:56:20Z2022-12-21T00:00:00Z2022-12-212022-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/27448TID:203175387engCruz, Gonçalo Monteiroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:33:40Zoai:repositorio.iscte-iul.pt:10071/27448Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:15:11.371761Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Network anomalies detection via event analysis and correlation by a smart system
title Network anomalies detection via event analysis and correlation by a smart system
spellingShingle Network anomalies detection via event analysis and correlation by a smart system
Cruz, Gonçalo Monteiro
Data monitoring
Anomaly detection
Attack detection
SIEM
Big data
ML algorithms
Monitorização de dados
Deteção de anomalias
Deteção de ataques
Sistemas SIEM
Algoritmos ML
title_short Network anomalies detection via event analysis and correlation by a smart system
title_full Network anomalies detection via event analysis and correlation by a smart system
title_fullStr Network anomalies detection via event analysis and correlation by a smart system
title_full_unstemmed Network anomalies detection via event analysis and correlation by a smart system
title_sort Network anomalies detection via event analysis and correlation by a smart system
author Cruz, Gonçalo Monteiro
author_facet Cruz, Gonçalo Monteiro
author_role author
dc.contributor.author.fl_str_mv Cruz, Gonçalo Monteiro
dc.subject.por.fl_str_mv Data monitoring
Anomaly detection
Attack detection
SIEM
Big data
ML algorithms
Monitorização de dados
Deteção de anomalias
Deteção de ataques
Sistemas SIEM
Algoritmos ML
topic Data monitoring
Anomaly detection
Attack detection
SIEM
Big data
ML algorithms
Monitorização de dados
Deteção de anomalias
Deteção de ataques
Sistemas SIEM
Algoritmos ML
description The multidisciplinary of contemporary societies compel us to look at Information Technology (IT) systems as one of the most significant grants that we can remember. However, its increase implies a mandatory security force for users, a force in the form of effective and robust tools to combat cybercrime to which users, individual or collective, are ex-posed almost daily. Monitoring and detection of this kind of problem must be ensured in real-time, allowing companies to intervene fruitfully, quickly and in unison. The proposed framework is based on an organic symbiosis between credible, affordable, and effective open-source tools for data analysis, relying on Security Information and Event Management (SIEM), Big Data and Machine Learning (ML) techniques commonly applied for the development of real-time monitoring systems. Dissecting this framework, it is composed of a system based on SIEM methodology that provides monitoring of data in real-time and simultaneously saves the information, to assist forensic investigation teams. Secondly, the application of the Big Data concept is effective in manipulating and organising the flow of data. Lastly, the use of ML techniques that help create mechanisms to detect possible attacks or anomalies on the network. This framework is intended to provide a real-time analysis application in the institution ISCTE – Instituto Universitário de Lisboa (Iscte), offering a more complete, efficient, and secure monitoring of the data from the different devices comprising the network.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-21T00:00:00Z
2022-12-21
2022-10
2023-01-25T12:56:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/27448
TID:203175387
url http://hdl.handle.net/10071/27448
identifier_str_mv TID:203175387
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134709047885824