Perturbation splitting for more accurate eigenvalues
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/8803 |
Resumo: | Let $T$ be a symmetric tridiagonal matrix with entries and eigenvalues of different magnitudes. For some $T$, small entrywise relative perturbations induce small errors in the eigenvalues, independently of the size of the entries of the matrix; this is certainly true when the perturbed matrix can be written as $\widetilde{T}=X^{T}TX$ with small $||X^{T}X-I||$. Even if it is not possible to express in this way the perturbations in every entry of $T$, much can be gained by doing so for as many as possible entries of larger magnitude. We propose a technique which consists of splitting multiplicative and additive perturbations to produce new error bounds which, for some matrices, are much sharper than the usual ones. Such bounds may be useful in the development of improved software for the tridiagonal eigenvalue problem, and we describe their role in the context of a mixed precision bisection-like procedure. Using the very same idea of splitting perturbations (multiplicative and additive), we show that when $T$ defines well its eigenvalues, the numerical values of the pivots in the usual decomposition $T-\lambda I=LDL^{T}$ may be used to compute approximations with high relative precision. |
id |
RCAP_d9fb0c43de6412f745752da2d3cc140f |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/8803 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Perturbation splitting for more accurate eigenvaluesSymmetric tridiagonal matricesEigenvaluesPerturbation theoryScience & TechnologyLet $T$ be a symmetric tridiagonal matrix with entries and eigenvalues of different magnitudes. For some $T$, small entrywise relative perturbations induce small errors in the eigenvalues, independently of the size of the entries of the matrix; this is certainly true when the perturbed matrix can be written as $\widetilde{T}=X^{T}TX$ with small $||X^{T}X-I||$. Even if it is not possible to express in this way the perturbations in every entry of $T$, much can be gained by doing so for as many as possible entries of larger magnitude. We propose a technique which consists of splitting multiplicative and additive perturbations to produce new error bounds which, for some matrices, are much sharper than the usual ones. Such bounds may be useful in the development of improved software for the tridiagonal eigenvalue problem, and we describe their role in the context of a mixed precision bisection-like procedure. Using the very same idea of splitting perturbations (multiplicative and additive), we show that when $T$ defines well its eigenvalues, the numerical values of the pivots in the usual decomposition $T-\lambda I=LDL^{T}$ may be used to compute approximations with high relative precision.Fundação para a Ciência e Tecnologia (FCT) - POCI 2010Society for Industrial and Applied Mathematics (SIAM)Universidade do MinhoRalha, Rui2009-022009-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/8803eng"SIAM Journal on Matrix Analysis and Applications." ISSN 0895-4798. 31:1 (Feb.2009) 75-91.0895-479810.1137/070687049http://www.siam.org/journals/simax/31-1/68704.htmlinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:32:19Zoai:repositorium.sdum.uminho.pt:1822/8803Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:27:39.052566Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Perturbation splitting for more accurate eigenvalues |
title |
Perturbation splitting for more accurate eigenvalues |
spellingShingle |
Perturbation splitting for more accurate eigenvalues Ralha, Rui Symmetric tridiagonal matrices Eigenvalues Perturbation theory Science & Technology |
title_short |
Perturbation splitting for more accurate eigenvalues |
title_full |
Perturbation splitting for more accurate eigenvalues |
title_fullStr |
Perturbation splitting for more accurate eigenvalues |
title_full_unstemmed |
Perturbation splitting for more accurate eigenvalues |
title_sort |
Perturbation splitting for more accurate eigenvalues |
author |
Ralha, Rui |
author_facet |
Ralha, Rui |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ralha, Rui |
dc.subject.por.fl_str_mv |
Symmetric tridiagonal matrices Eigenvalues Perturbation theory Science & Technology |
topic |
Symmetric tridiagonal matrices Eigenvalues Perturbation theory Science & Technology |
description |
Let $T$ be a symmetric tridiagonal matrix with entries and eigenvalues of different magnitudes. For some $T$, small entrywise relative perturbations induce small errors in the eigenvalues, independently of the size of the entries of the matrix; this is certainly true when the perturbed matrix can be written as $\widetilde{T}=X^{T}TX$ with small $||X^{T}X-I||$. Even if it is not possible to express in this way the perturbations in every entry of $T$, much can be gained by doing so for as many as possible entries of larger magnitude. We propose a technique which consists of splitting multiplicative and additive perturbations to produce new error bounds which, for some matrices, are much sharper than the usual ones. Such bounds may be useful in the development of improved software for the tridiagonal eigenvalue problem, and we describe their role in the context of a mixed precision bisection-like procedure. Using the very same idea of splitting perturbations (multiplicative and additive), we show that when $T$ defines well its eigenvalues, the numerical values of the pivots in the usual decomposition $T-\lambda I=LDL^{T}$ may be used to compute approximations with high relative precision. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-02 2009-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/8803 |
url |
http://hdl.handle.net/1822/8803 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"SIAM Journal on Matrix Analysis and Applications." ISSN 0895-4798. 31:1 (Feb.2009) 75-91. 0895-4798 10.1137/070687049 http://www.siam.org/journals/simax/31-1/68704.html |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics (SIAM) |
publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics (SIAM) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132768392708096 |