Perturbation splitting for more accurate eigenvalues

Detalhes bibliográficos
Autor(a) principal: Ralha, Rui
Data de Publicação: 2009
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/8803
Resumo: Let $T$ be a symmetric tridiagonal matrix with entries and eigenvalues of different magnitudes. For some $T$, small entrywise relative perturbations induce small errors in the eigenvalues, independently of the size of the entries of the matrix; this is certainly true when the perturbed matrix can be written as $\widetilde{T}=X^{T}TX$ with small $||X^{T}X-I||$. Even if it is not possible to express in this way the perturbations in every entry of $T$, much can be gained by doing so for as many as possible entries of larger magnitude. We propose a technique which consists of splitting multiplicative and additive perturbations to produce new error bounds which, for some matrices, are much sharper than the usual ones. Such bounds may be useful in the development of improved software for the tridiagonal eigenvalue problem, and we describe their role in the context of a mixed precision bisection-like procedure. Using the very same idea of splitting perturbations (multiplicative and additive), we show that when $T$ defines well its eigenvalues, the numerical values of the pivots in the usual decomposition $T-\lambda I=LDL^{T}$ may be used to compute approximations with high relative precision.
id RCAP_d9fb0c43de6412f745752da2d3cc140f
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/8803
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Perturbation splitting for more accurate eigenvaluesSymmetric tridiagonal matricesEigenvaluesPerturbation theoryScience & TechnologyLet $T$ be a symmetric tridiagonal matrix with entries and eigenvalues of different magnitudes. For some $T$, small entrywise relative perturbations induce small errors in the eigenvalues, independently of the size of the entries of the matrix; this is certainly true when the perturbed matrix can be written as $\widetilde{T}=X^{T}TX$ with small $||X^{T}X-I||$. Even if it is not possible to express in this way the perturbations in every entry of $T$, much can be gained by doing so for as many as possible entries of larger magnitude. We propose a technique which consists of splitting multiplicative and additive perturbations to produce new error bounds which, for some matrices, are much sharper than the usual ones. Such bounds may be useful in the development of improved software for the tridiagonal eigenvalue problem, and we describe their role in the context of a mixed precision bisection-like procedure. Using the very same idea of splitting perturbations (multiplicative and additive), we show that when $T$ defines well its eigenvalues, the numerical values of the pivots in the usual decomposition $T-\lambda I=LDL^{T}$ may be used to compute approximations with high relative precision.Fundação para a Ciência e Tecnologia (FCT) - POCI 2010Society for Industrial and Applied Mathematics (SIAM)Universidade do MinhoRalha, Rui2009-022009-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/8803eng"SIAM Journal on Matrix Analysis and Applications." ISSN 0895-4798. 31:1 (Feb.2009) 75-91.0895-479810.1137/070687049http://www.siam.org/journals/simax/31-1/68704.htmlinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:32:19Zoai:repositorium.sdum.uminho.pt:1822/8803Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:27:39.052566Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Perturbation splitting for more accurate eigenvalues
title Perturbation splitting for more accurate eigenvalues
spellingShingle Perturbation splitting for more accurate eigenvalues
Ralha, Rui
Symmetric tridiagonal matrices
Eigenvalues
Perturbation theory
Science & Technology
title_short Perturbation splitting for more accurate eigenvalues
title_full Perturbation splitting for more accurate eigenvalues
title_fullStr Perturbation splitting for more accurate eigenvalues
title_full_unstemmed Perturbation splitting for more accurate eigenvalues
title_sort Perturbation splitting for more accurate eigenvalues
author Ralha, Rui
author_facet Ralha, Rui
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Ralha, Rui
dc.subject.por.fl_str_mv Symmetric tridiagonal matrices
Eigenvalues
Perturbation theory
Science & Technology
topic Symmetric tridiagonal matrices
Eigenvalues
Perturbation theory
Science & Technology
description Let $T$ be a symmetric tridiagonal matrix with entries and eigenvalues of different magnitudes. For some $T$, small entrywise relative perturbations induce small errors in the eigenvalues, independently of the size of the entries of the matrix; this is certainly true when the perturbed matrix can be written as $\widetilde{T}=X^{T}TX$ with small $||X^{T}X-I||$. Even if it is not possible to express in this way the perturbations in every entry of $T$, much can be gained by doing so for as many as possible entries of larger magnitude. We propose a technique which consists of splitting multiplicative and additive perturbations to produce new error bounds which, for some matrices, are much sharper than the usual ones. Such bounds may be useful in the development of improved software for the tridiagonal eigenvalue problem, and we describe their role in the context of a mixed precision bisection-like procedure. Using the very same idea of splitting perturbations (multiplicative and additive), we show that when $T$ defines well its eigenvalues, the numerical values of the pivots in the usual decomposition $T-\lambda I=LDL^{T}$ may be used to compute approximations with high relative precision.
publishDate 2009
dc.date.none.fl_str_mv 2009-02
2009-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/8803
url http://hdl.handle.net/1822/8803
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "SIAM Journal on Matrix Analysis and Applications." ISSN 0895-4798. 31:1 (Feb.2009) 75-91.
0895-4798
10.1137/070687049
http://www.siam.org/journals/simax/31-1/68704.html
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Society for Industrial and Applied Mathematics (SIAM)
publisher.none.fl_str_mv Society for Industrial and Applied Mathematics (SIAM)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132768392708096