New convolutions for quadratic-phase Fourier integral operators and their applications

Detalhes bibliográficos
Autor(a) principal: Castro, L. P.
Data de Publicação: 2018
Outros Autores: Minh, L. T., Tuan, N. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/21367
Resumo: We obtain new convolutions for quadratic-phase Fourier integral operators (which include, as subcases, e.g., the fractional Fourier transform and the linear canonical transform). The structure of these convolutions is based on properties of the mentioned integral operators and takes profit of weight-functions associated with some amplitude and Gaussian functions. Therefore, the fundamental properties of that quadratic-phase Fourier integral operators are also studied (including a Riemann-Lebesgue type lemma, invertibility results, a Plancherel type theorem and a Parseval type identity). As applications, we obtain new Young type inequalities, the asymptotic behaviour of some oscillatory integrals, and the solvability of convolution integral equations.
id RCAP_da394b34036f0e605af01ed0e32e1c5f
oai_identifier_str oai:ria.ua.pt:10773/21367
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling New convolutions for quadratic-phase Fourier integral operators and their applicationsConvolutionYoung inequalityOscillatory integralConvolution integral equationFractional Fourier transformLinear canonical transformWe obtain new convolutions for quadratic-phase Fourier integral operators (which include, as subcases, e.g., the fractional Fourier transform and the linear canonical transform). The structure of these convolutions is based on properties of the mentioned integral operators and takes profit of weight-functions associated with some amplitude and Gaussian functions. Therefore, the fundamental properties of that quadratic-phase Fourier integral operators are also studied (including a Riemann-Lebesgue type lemma, invertibility results, a Plancherel type theorem and a Parseval type identity). As applications, we obtain new Young type inequalities, the asymptotic behaviour of some oscillatory integrals, and the solvability of convolution integral equations.Springer2018-01-08T16:38:27Z2018-01-02T00:00:00Z2018-01-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/21367eng1660-544610.1007/s00009-017-1063-yCastro, L. P.Minh, L. T.Tuan, N. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:42:08Zoai:ria.ua.pt:10773/21367Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:55:55.406219Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv New convolutions for quadratic-phase Fourier integral operators and their applications
title New convolutions for quadratic-phase Fourier integral operators and their applications
spellingShingle New convolutions for quadratic-phase Fourier integral operators and their applications
Castro, L. P.
Convolution
Young inequality
Oscillatory integral
Convolution integral equation
Fractional Fourier transform
Linear canonical transform
title_short New convolutions for quadratic-phase Fourier integral operators and their applications
title_full New convolutions for quadratic-phase Fourier integral operators and their applications
title_fullStr New convolutions for quadratic-phase Fourier integral operators and their applications
title_full_unstemmed New convolutions for quadratic-phase Fourier integral operators and their applications
title_sort New convolutions for quadratic-phase Fourier integral operators and their applications
author Castro, L. P.
author_facet Castro, L. P.
Minh, L. T.
Tuan, N. M.
author_role author
author2 Minh, L. T.
Tuan, N. M.
author2_role author
author
dc.contributor.author.fl_str_mv Castro, L. P.
Minh, L. T.
Tuan, N. M.
dc.subject.por.fl_str_mv Convolution
Young inequality
Oscillatory integral
Convolution integral equation
Fractional Fourier transform
Linear canonical transform
topic Convolution
Young inequality
Oscillatory integral
Convolution integral equation
Fractional Fourier transform
Linear canonical transform
description We obtain new convolutions for quadratic-phase Fourier integral operators (which include, as subcases, e.g., the fractional Fourier transform and the linear canonical transform). The structure of these convolutions is based on properties of the mentioned integral operators and takes profit of weight-functions associated with some amplitude and Gaussian functions. Therefore, the fundamental properties of that quadratic-phase Fourier integral operators are also studied (including a Riemann-Lebesgue type lemma, invertibility results, a Plancherel type theorem and a Parseval type identity). As applications, we obtain new Young type inequalities, the asymptotic behaviour of some oscillatory integrals, and the solvability of convolution integral equations.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-08T16:38:27Z
2018-01-02T00:00:00Z
2018-01-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/21367
url http://hdl.handle.net/10773/21367
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1660-5446
10.1007/s00009-017-1063-y
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137612832702464