New convolutions for quadratic-phase Fourier integral operators and their applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/21367 |
Resumo: | We obtain new convolutions for quadratic-phase Fourier integral operators (which include, as subcases, e.g., the fractional Fourier transform and the linear canonical transform). The structure of these convolutions is based on properties of the mentioned integral operators and takes profit of weight-functions associated with some amplitude and Gaussian functions. Therefore, the fundamental properties of that quadratic-phase Fourier integral operators are also studied (including a Riemann-Lebesgue type lemma, invertibility results, a Plancherel type theorem and a Parseval type identity). As applications, we obtain new Young type inequalities, the asymptotic behaviour of some oscillatory integrals, and the solvability of convolution integral equations. |
id |
RCAP_da394b34036f0e605af01ed0e32e1c5f |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/21367 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
New convolutions for quadratic-phase Fourier integral operators and their applicationsConvolutionYoung inequalityOscillatory integralConvolution integral equationFractional Fourier transformLinear canonical transformWe obtain new convolutions for quadratic-phase Fourier integral operators (which include, as subcases, e.g., the fractional Fourier transform and the linear canonical transform). The structure of these convolutions is based on properties of the mentioned integral operators and takes profit of weight-functions associated with some amplitude and Gaussian functions. Therefore, the fundamental properties of that quadratic-phase Fourier integral operators are also studied (including a Riemann-Lebesgue type lemma, invertibility results, a Plancherel type theorem and a Parseval type identity). As applications, we obtain new Young type inequalities, the asymptotic behaviour of some oscillatory integrals, and the solvability of convolution integral equations.Springer2018-01-08T16:38:27Z2018-01-02T00:00:00Z2018-01-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/21367eng1660-544610.1007/s00009-017-1063-yCastro, L. P.Minh, L. T.Tuan, N. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:42:08Zoai:ria.ua.pt:10773/21367Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:55:55.406219Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
New convolutions for quadratic-phase Fourier integral operators and their applications |
title |
New convolutions for quadratic-phase Fourier integral operators and their applications |
spellingShingle |
New convolutions for quadratic-phase Fourier integral operators and their applications Castro, L. P. Convolution Young inequality Oscillatory integral Convolution integral equation Fractional Fourier transform Linear canonical transform |
title_short |
New convolutions for quadratic-phase Fourier integral operators and their applications |
title_full |
New convolutions for quadratic-phase Fourier integral operators and their applications |
title_fullStr |
New convolutions for quadratic-phase Fourier integral operators and their applications |
title_full_unstemmed |
New convolutions for quadratic-phase Fourier integral operators and their applications |
title_sort |
New convolutions for quadratic-phase Fourier integral operators and their applications |
author |
Castro, L. P. |
author_facet |
Castro, L. P. Minh, L. T. Tuan, N. M. |
author_role |
author |
author2 |
Minh, L. T. Tuan, N. M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Castro, L. P. Minh, L. T. Tuan, N. M. |
dc.subject.por.fl_str_mv |
Convolution Young inequality Oscillatory integral Convolution integral equation Fractional Fourier transform Linear canonical transform |
topic |
Convolution Young inequality Oscillatory integral Convolution integral equation Fractional Fourier transform Linear canonical transform |
description |
We obtain new convolutions for quadratic-phase Fourier integral operators (which include, as subcases, e.g., the fractional Fourier transform and the linear canonical transform). The structure of these convolutions is based on properties of the mentioned integral operators and takes profit of weight-functions associated with some amplitude and Gaussian functions. Therefore, the fundamental properties of that quadratic-phase Fourier integral operators are also studied (including a Riemann-Lebesgue type lemma, invertibility results, a Plancherel type theorem and a Parseval type identity). As applications, we obtain new Young type inequalities, the asymptotic behaviour of some oscillatory integrals, and the solvability of convolution integral equations. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-08T16:38:27Z 2018-01-02T00:00:00Z 2018-01-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/21367 |
url |
http://hdl.handle.net/10773/21367 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1660-5446 10.1007/s00009-017-1063-y |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137612832702464 |