“Smart” nanosensors for early detection of corrosion: environmental behavior and effects on marine organisms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/33313 |
Resumo: | Corrosion is an environmental and economic global problem. “Smart” or stimuli-responsive colorimetric nanosensors for maritime coatings have been proposed as an asset to overcome the limitations of the current monitoring techniques by changing color in the presence of triggers associated with the early stages of corrosion. Layered double hydroxides (Zn–Al LDH; Mg–Al LDH) and silica mesoporous nanocapsules (SiNC) were used as precursor nanocarriers of active compounds: hexacyanoferrate ions ([Fe(CN)6] 3-) and phenolphthalein (PhPh), respectively. Additionally, the safer-by-design principles were employed to optimize the nanosensors in an ecofriendly perspective (e.g., regular vs. warm-washed SiNC-PhPh; immobilization using different carriers: Zn–Al LDH-[Fe(CN)6] 3- vs. Mg–Al LDH-[Fe(CN)6] 3-). Therefore, the present study aims to assess the environmental behavior in saltwater and the toxic effects of the nanosensors, their nanocarriers, and the active compounds on the marine microalgae Tetraselmis chuii and the crustacean Artemia salina. Briefly, tested compounds exhibited no acute toxic effects towards A. salina (NOEC = 100 mg/L), apart from SiNC-PhPh (LC50 = 2.96 mg/L) while tested active compounds and nanosensors caused significant growth inhibition on T. chuii (lowest IC50 = 0.40 mg/L for SiNC-PhPh). The effects of [Fe(CN)6] 3- were similar regardless of the nanocarrier choice. Regarding SiNC-PhPh, its toxicity can be decreased at least twice by simply reinforcing the nanocapsules washing, which contributes to the removal (at least partially) of the surfactants residues. Thus, implementing safe-by-design strategies in the early stages of research proved to be critical, although further progress is still needed towards the development of truly eco-friendly nanosensors. |
id |
RCAP_dac724a7efc1a1cb21c3cf01cd4f6f9d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/33313 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
“Smart” nanosensors for early detection of corrosion: environmental behavior and effects on marine organismsCorrosion sensingEngineered nanomaterialsNanoecotoxicologySafe-by-designCorrosion is an environmental and economic global problem. “Smart” or stimuli-responsive colorimetric nanosensors for maritime coatings have been proposed as an asset to overcome the limitations of the current monitoring techniques by changing color in the presence of triggers associated with the early stages of corrosion. Layered double hydroxides (Zn–Al LDH; Mg–Al LDH) and silica mesoporous nanocapsules (SiNC) were used as precursor nanocarriers of active compounds: hexacyanoferrate ions ([Fe(CN)6] 3-) and phenolphthalein (PhPh), respectively. Additionally, the safer-by-design principles were employed to optimize the nanosensors in an ecofriendly perspective (e.g., regular vs. warm-washed SiNC-PhPh; immobilization using different carriers: Zn–Al LDH-[Fe(CN)6] 3- vs. Mg–Al LDH-[Fe(CN)6] 3-). Therefore, the present study aims to assess the environmental behavior in saltwater and the toxic effects of the nanosensors, their nanocarriers, and the active compounds on the marine microalgae Tetraselmis chuii and the crustacean Artemia salina. Briefly, tested compounds exhibited no acute toxic effects towards A. salina (NOEC = 100 mg/L), apart from SiNC-PhPh (LC50 = 2.96 mg/L) while tested active compounds and nanosensors caused significant growth inhibition on T. chuii (lowest IC50 = 0.40 mg/L for SiNC-PhPh). The effects of [Fe(CN)6] 3- were similar regardless of the nanocarrier choice. Regarding SiNC-PhPh, its toxicity can be decreased at least twice by simply reinforcing the nanocapsules washing, which contributes to the removal (at least partially) of the surfactants residues. Thus, implementing safe-by-design strategies in the early stages of research proved to be critical, although further progress is still needed towards the development of truly eco-friendly nanosensors.Elsevier2024-06-01T00:00:00Z2022-06-01T00:00:00Z2022-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/33313eng0269-749110.1016/j.envpol.2022.118973Martins, RobertoFigueiredo, JoanaSushkova, AlesiaWilhelm, ManonTedim, JoãoLoureiro, Susanainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:03:59Zoai:ria.ua.pt:10773/33313Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:04:43.700571Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
“Smart” nanosensors for early detection of corrosion: environmental behavior and effects on marine organisms |
title |
“Smart” nanosensors for early detection of corrosion: environmental behavior and effects on marine organisms |
spellingShingle |
“Smart” nanosensors for early detection of corrosion: environmental behavior and effects on marine organisms Martins, Roberto Corrosion sensing Engineered nanomaterials Nanoecotoxicology Safe-by-design |
title_short |
“Smart” nanosensors for early detection of corrosion: environmental behavior and effects on marine organisms |
title_full |
“Smart” nanosensors for early detection of corrosion: environmental behavior and effects on marine organisms |
title_fullStr |
“Smart” nanosensors for early detection of corrosion: environmental behavior and effects on marine organisms |
title_full_unstemmed |
“Smart” nanosensors for early detection of corrosion: environmental behavior and effects on marine organisms |
title_sort |
“Smart” nanosensors for early detection of corrosion: environmental behavior and effects on marine organisms |
author |
Martins, Roberto |
author_facet |
Martins, Roberto Figueiredo, Joana Sushkova, Alesia Wilhelm, Manon Tedim, João Loureiro, Susana |
author_role |
author |
author2 |
Figueiredo, Joana Sushkova, Alesia Wilhelm, Manon Tedim, João Loureiro, Susana |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Martins, Roberto Figueiredo, Joana Sushkova, Alesia Wilhelm, Manon Tedim, João Loureiro, Susana |
dc.subject.por.fl_str_mv |
Corrosion sensing Engineered nanomaterials Nanoecotoxicology Safe-by-design |
topic |
Corrosion sensing Engineered nanomaterials Nanoecotoxicology Safe-by-design |
description |
Corrosion is an environmental and economic global problem. “Smart” or stimuli-responsive colorimetric nanosensors for maritime coatings have been proposed as an asset to overcome the limitations of the current monitoring techniques by changing color in the presence of triggers associated with the early stages of corrosion. Layered double hydroxides (Zn–Al LDH; Mg–Al LDH) and silica mesoporous nanocapsules (SiNC) were used as precursor nanocarriers of active compounds: hexacyanoferrate ions ([Fe(CN)6] 3-) and phenolphthalein (PhPh), respectively. Additionally, the safer-by-design principles were employed to optimize the nanosensors in an ecofriendly perspective (e.g., regular vs. warm-washed SiNC-PhPh; immobilization using different carriers: Zn–Al LDH-[Fe(CN)6] 3- vs. Mg–Al LDH-[Fe(CN)6] 3-). Therefore, the present study aims to assess the environmental behavior in saltwater and the toxic effects of the nanosensors, their nanocarriers, and the active compounds on the marine microalgae Tetraselmis chuii and the crustacean Artemia salina. Briefly, tested compounds exhibited no acute toxic effects towards A. salina (NOEC = 100 mg/L), apart from SiNC-PhPh (LC50 = 2.96 mg/L) while tested active compounds and nanosensors caused significant growth inhibition on T. chuii (lowest IC50 = 0.40 mg/L for SiNC-PhPh). The effects of [Fe(CN)6] 3- were similar regardless of the nanocarrier choice. Regarding SiNC-PhPh, its toxicity can be decreased at least twice by simply reinforcing the nanocapsules washing, which contributes to the removal (at least partially) of the surfactants residues. Thus, implementing safe-by-design strategies in the early stages of research proved to be critical, although further progress is still needed towards the development of truly eco-friendly nanosensors. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-01T00:00:00Z 2022-06-01 2024-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/33313 |
url |
http://hdl.handle.net/10773/33313 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0269-7491 10.1016/j.envpol.2022.118973 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137702596050944 |