Healthy bone reconstruction through generative deep learning

Detalhes bibliográficos
Autor(a) principal: Real, Ana Catarina Maio
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/89576
Resumo: Dissertação de mestrado em Biomedical Engineering Medical Eletronics
id RCAP_db3633cec49fadb55113abf06ff79bcf
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/89576
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Healthy bone reconstruction through generative deep learningArtificial IntelligenceOrthopedic surgeryPreoperative planningShoulder arthroplastyOsteoarthritisGlenoidGenerative deep learning3D Image-to-image translationVirtual bone reconstructionPix2PixCycleGANEngenharia e Tecnologia::Engenharia MédicaDissertação de mestrado em Biomedical Engineering Medical EletronicsArtificial Intelligence (AI) is transforming the clinical practice of orthopedic surgeons by combining technology with their technical skills. AI can play a primary role in standardizing pre-surgical planning, assisting orthopedic surgeons in the decision-making process to minimize medical errors, guiding appropriate surgical management, and reducing the cost and duration of surgery through intelligent solutions in the field of orthopedics. The complexity and variability of the glenoid cavity anatomy have been a challenge for the medical community, especially in reconstructive surgical interventions such as shoulder arthroplasty. This surgery is recommended for the treatment of osteoarthritis (OA), a pathology defined by the progressive degeneration of the articular cartilage of the humeral head and glenoid, causing pain, stiffness, and limitation of movement. In preoperative planning, a 3D reconstruction of glenoid bone defects can play a fundamental role in the comprehension of the patient’s native anatomy and, consequently, assist the orthopedic surgeon in the decision-making process, to restore the morphological parameters of the scapula, which is crucial for functional outcomes and the longevity of the implant. The main objective of this dissertation is the reconstruction of the healthy anatomy of the glenoid from three-dimensional computed tomography (3D CT) images through Generative Deep learning (GDL). In quantitative terms, the goal of this project is to virtually reconstruct glenoid bone defects so that the estimated version is within the range [-5º, 10º] since the purpose of shoulder arthroplasty is to accurately restore a healthy patient’s anatomy. This project explores two approaches for training a 3D image-to-image translation model: Pix2Pix and CycleGAN. In Pix2Pix, a reference image in the original domain is available for each image in the target domain , allowing one-to-one mapping. In contrast, CycleGAN performs training with unpaired data, the images in domain are semantically related to the images in domain , and there is not necessarily a reference image in domain for each image in domain . The distinguishing feature of CycleGAN is the incorporation of cycle consistency loss, which facilitates training without paired data. In other words, this model translates from the original domain to the target domain without a one-to-one mapping. This study aims to investigate and compare the performance of these two architectures in the context of healthy bone reconstruction. Concisely, the generative model (CycleGAN or Pix2Pix) seeks to learn the mapping function between two domains, ∶ → , i.e., the conversion of an image from the domain to an image () from the domain , where is an image of a scapula with the glenoid removed and () the sample produced by the generator, which wants to conceive images similar to those of the real dataset of the healthydomain. The study demonstrates the potential of the CycleGAN and Pix2Pix models to reconstruct a healthy bone from a defective bone. Taking into consideration a significantly larger dataset, both models are expected to outperform in reconstructing a defective glenoid. That opens up a possibility for the development of an automated and intelligent virtual reconstruction tool that can be used in clinical applications, to ensure that the preoperative planning process of shoulder arthroplasty is efficient and quick, guide an appropriate surgical management, facilitate communication between surgeons, minimize medical errors, provide prognostic information, and optimize the performance of shoulder arthroplasty.Lima, C. S.Ribeiro, PedroUniversidade do MinhoReal, Ana Catarina Maio2023-09-052023-09-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1822/89576eng203539214info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-16T01:21:24Zoai:repositorium.sdum.uminho.pt:1822/89576Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:01:09.373560Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Healthy bone reconstruction through generative deep learning
title Healthy bone reconstruction through generative deep learning
spellingShingle Healthy bone reconstruction through generative deep learning
Real, Ana Catarina Maio
Artificial Intelligence
Orthopedic surgery
Preoperative planning
Shoulder arthroplasty
Osteoarthritis
Glenoid
Generative deep learning
3D Image-to-image translation
Virtual bone reconstruction
Pix2Pix
CycleGAN
Engenharia e Tecnologia::Engenharia Médica
title_short Healthy bone reconstruction through generative deep learning
title_full Healthy bone reconstruction through generative deep learning
title_fullStr Healthy bone reconstruction through generative deep learning
title_full_unstemmed Healthy bone reconstruction through generative deep learning
title_sort Healthy bone reconstruction through generative deep learning
author Real, Ana Catarina Maio
author_facet Real, Ana Catarina Maio
author_role author
dc.contributor.none.fl_str_mv Lima, C. S.
Ribeiro, Pedro
Universidade do Minho
dc.contributor.author.fl_str_mv Real, Ana Catarina Maio
dc.subject.por.fl_str_mv Artificial Intelligence
Orthopedic surgery
Preoperative planning
Shoulder arthroplasty
Osteoarthritis
Glenoid
Generative deep learning
3D Image-to-image translation
Virtual bone reconstruction
Pix2Pix
CycleGAN
Engenharia e Tecnologia::Engenharia Médica
topic Artificial Intelligence
Orthopedic surgery
Preoperative planning
Shoulder arthroplasty
Osteoarthritis
Glenoid
Generative deep learning
3D Image-to-image translation
Virtual bone reconstruction
Pix2Pix
CycleGAN
Engenharia e Tecnologia::Engenharia Médica
description Dissertação de mestrado em Biomedical Engineering Medical Eletronics
publishDate 2023
dc.date.none.fl_str_mv 2023-09-05
2023-09-05T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/89576
url https://hdl.handle.net/1822/89576
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 203539214
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138185835446272