Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA

Detalhes bibliográficos
Autor(a) principal: Todesco, Giuditta
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/30878
Resumo: The aim of this work was to design and optimize a workflow to apply the Machine Learning classifier BIANCA (Brain Intensity AbNormalities Classification Algorithm) to detect lesions characterized by white matter T2 hyperintensity in clinical Magnetic Resonance Multiple Sclerosis datasets. The designed pipeline includes pre-processing, lesion identification and optimization of BIANCA options. The classifier has been trained and tuned on 15 cases making up the training dataset of the MICCAI 2016 (Medical Image Computing and Computer Assisted Interventions) challenge and then tested on 30 cases from the Lesjak et al. public dataset. The results obtained are in good agreement with those reported by the 13 teams concluding the MICCAI 2016 challenge, thus confirming that this algorithm can be a reliable tool to detect and classify Multiple Sclerosis lesions in Magnetic Resonance studies.
id RCAP_db3ad2ed85076fef88dad18ad63dbbb7
oai_identifier_str oai:ria.ua.pt:10773/30878
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCAMagnetic resonanceMultiple sclerosisk-NN classifiersBIANCAMachine learningThe aim of this work was to design and optimize a workflow to apply the Machine Learning classifier BIANCA (Brain Intensity AbNormalities Classification Algorithm) to detect lesions characterized by white matter T2 hyperintensity in clinical Magnetic Resonance Multiple Sclerosis datasets. The designed pipeline includes pre-processing, lesion identification and optimization of BIANCA options. The classifier has been trained and tuned on 15 cases making up the training dataset of the MICCAI 2016 (Medical Image Computing and Computer Assisted Interventions) challenge and then tested on 30 cases from the Lesjak et al. public dataset. The results obtained are in good agreement with those reported by the 13 teams concluding the MICCAI 2016 challenge, thus confirming that this algorithm can be a reliable tool to detect and classify Multiple Sclerosis lesions in Magnetic Resonance studies.Este trabalho teve como objetivo a conceção e otimização de um procedimento para aplicação de um algoritmo de Machine Learning, o classificador BIANCA (Brain Intensity AbNormalities Classification Algorithm), para deteção de lesões caracterizadas por hiperintensidade em T2 da matéria branca em estudos clínicos de Esclerose Múltipla por Ressonância Magnética. O procedimento concebido inclui pré-processamento, identificação das lesões e otimização dos parâmetros do algoritmo BIANCA. O classificador foi treinado e afinado utilizando os 15 casos clínicos que constituíam o conjunto de treino do desafio MICCAI 2016 (Medical Image Computing and Computer Assisted Interventions) e posteriormente testado em 30 casos clínicos de uma base de dados pública (Lesjak et al.). Os resultados obtidos são em concordância com os alcançados pelas 13 equipas que concluíram o desafio MICCAI 2016, confirmando que este algoritmo pode ser uma ferramenta válida para a deteção e classificação de lesões de Esclerose Múltipla em estudos de Ressonância Magnética.2021-03-16T10:23:02Z2021-02-26T00:00:00Z2021-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/30878engTodesco, Giudittainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:59:40Zoai:ria.ua.pt:10773/30878Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:52.193751Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA
title Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA
spellingShingle Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA
Todesco, Giuditta
Magnetic resonance
Multiple sclerosis
k-NN classifiers
BIANCA
Machine learning
title_short Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA
title_full Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA
title_fullStr Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA
title_full_unstemmed Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA
title_sort Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA
author Todesco, Giuditta
author_facet Todesco, Giuditta
author_role author
dc.contributor.author.fl_str_mv Todesco, Giuditta
dc.subject.por.fl_str_mv Magnetic resonance
Multiple sclerosis
k-NN classifiers
BIANCA
Machine learning
topic Magnetic resonance
Multiple sclerosis
k-NN classifiers
BIANCA
Machine learning
description The aim of this work was to design and optimize a workflow to apply the Machine Learning classifier BIANCA (Brain Intensity AbNormalities Classification Algorithm) to detect lesions characterized by white matter T2 hyperintensity in clinical Magnetic Resonance Multiple Sclerosis datasets. The designed pipeline includes pre-processing, lesion identification and optimization of BIANCA options. The classifier has been trained and tuned on 15 cases making up the training dataset of the MICCAI 2016 (Medical Image Computing and Computer Assisted Interventions) challenge and then tested on 30 cases from the Lesjak et al. public dataset. The results obtained are in good agreement with those reported by the 13 teams concluding the MICCAI 2016 challenge, thus confirming that this algorithm can be a reliable tool to detect and classify Multiple Sclerosis lesions in Magnetic Resonance studies.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-16T10:23:02Z
2021-02-26T00:00:00Z
2021-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/30878
url http://hdl.handle.net/10773/30878
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137684032061440