Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/30878 |
Resumo: | The aim of this work was to design and optimize a workflow to apply the Machine Learning classifier BIANCA (Brain Intensity AbNormalities Classification Algorithm) to detect lesions characterized by white matter T2 hyperintensity in clinical Magnetic Resonance Multiple Sclerosis datasets. The designed pipeline includes pre-processing, lesion identification and optimization of BIANCA options. The classifier has been trained and tuned on 15 cases making up the training dataset of the MICCAI 2016 (Medical Image Computing and Computer Assisted Interventions) challenge and then tested on 30 cases from the Lesjak et al. public dataset. The results obtained are in good agreement with those reported by the 13 teams concluding the MICCAI 2016 challenge, thus confirming that this algorithm can be a reliable tool to detect and classify Multiple Sclerosis lesions in Magnetic Resonance studies. |
id |
RCAP_db3ad2ed85076fef88dad18ad63dbbb7 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/30878 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCAMagnetic resonanceMultiple sclerosisk-NN classifiersBIANCAMachine learningThe aim of this work was to design and optimize a workflow to apply the Machine Learning classifier BIANCA (Brain Intensity AbNormalities Classification Algorithm) to detect lesions characterized by white matter T2 hyperintensity in clinical Magnetic Resonance Multiple Sclerosis datasets. The designed pipeline includes pre-processing, lesion identification and optimization of BIANCA options. The classifier has been trained and tuned on 15 cases making up the training dataset of the MICCAI 2016 (Medical Image Computing and Computer Assisted Interventions) challenge and then tested on 30 cases from the Lesjak et al. public dataset. The results obtained are in good agreement with those reported by the 13 teams concluding the MICCAI 2016 challenge, thus confirming that this algorithm can be a reliable tool to detect and classify Multiple Sclerosis lesions in Magnetic Resonance studies.Este trabalho teve como objetivo a conceção e otimização de um procedimento para aplicação de um algoritmo de Machine Learning, o classificador BIANCA (Brain Intensity AbNormalities Classification Algorithm), para deteção de lesões caracterizadas por hiperintensidade em T2 da matéria branca em estudos clínicos de Esclerose Múltipla por Ressonância Magnética. O procedimento concebido inclui pré-processamento, identificação das lesões e otimização dos parâmetros do algoritmo BIANCA. O classificador foi treinado e afinado utilizando os 15 casos clínicos que constituíam o conjunto de treino do desafio MICCAI 2016 (Medical Image Computing and Computer Assisted Interventions) e posteriormente testado em 30 casos clínicos de uma base de dados pública (Lesjak et al.). Os resultados obtidos são em concordância com os alcançados pelas 13 equipas que concluíram o desafio MICCAI 2016, confirmando que este algoritmo pode ser uma ferramenta válida para a deteção e classificação de lesões de Esclerose Múltipla em estudos de Ressonância Magnética.2021-03-16T10:23:02Z2021-02-26T00:00:00Z2021-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/30878engTodesco, Giudittainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:59:40Zoai:ria.ua.pt:10773/30878Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:52.193751Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA |
title |
Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA |
spellingShingle |
Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA Todesco, Giuditta Magnetic resonance Multiple sclerosis k-NN classifiers BIANCA Machine learning |
title_short |
Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA |
title_full |
Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA |
title_fullStr |
Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA |
title_full_unstemmed |
Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA |
title_sort |
Automatic detection of multiple sclerosis lesions in brain magnetic resonance imaging using BIANCA |
author |
Todesco, Giuditta |
author_facet |
Todesco, Giuditta |
author_role |
author |
dc.contributor.author.fl_str_mv |
Todesco, Giuditta |
dc.subject.por.fl_str_mv |
Magnetic resonance Multiple sclerosis k-NN classifiers BIANCA Machine learning |
topic |
Magnetic resonance Multiple sclerosis k-NN classifiers BIANCA Machine learning |
description |
The aim of this work was to design and optimize a workflow to apply the Machine Learning classifier BIANCA (Brain Intensity AbNormalities Classification Algorithm) to detect lesions characterized by white matter T2 hyperintensity in clinical Magnetic Resonance Multiple Sclerosis datasets. The designed pipeline includes pre-processing, lesion identification and optimization of BIANCA options. The classifier has been trained and tuned on 15 cases making up the training dataset of the MICCAI 2016 (Medical Image Computing and Computer Assisted Interventions) challenge and then tested on 30 cases from the Lesjak et al. public dataset. The results obtained are in good agreement with those reported by the 13 teams concluding the MICCAI 2016 challenge, thus confirming that this algorithm can be a reliable tool to detect and classify Multiple Sclerosis lesions in Magnetic Resonance studies. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-16T10:23:02Z 2021-02-26T00:00:00Z 2021-02-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/30878 |
url |
http://hdl.handle.net/10773/30878 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137684032061440 |