Overcoming black body radiation limit in free space: metamaterial superemitter

Detalhes bibliográficos
Autor(a) principal: Maslovski, Stanislav I.
Data de Publicação: 2016
Outros Autores: Simovski, Constantin R, Tretyakov, Sergei A
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/108726
https://doi.org/10.1088/1367-2630/18/1/013034
Resumo: Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff–Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermophotovoltaic systems and other devices.
id RCAP_db3d7d20c45b8d9e874a5910bbfeb2de
oai_identifier_str oai:estudogeral.uc.pt:10316/108726
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Overcoming black body radiation limit in free space: metamaterial superemitterHere, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff–Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermophotovoltaic systems and other devices.Institute of Physics Publishing2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/108726http://hdl.handle.net/10316/108726https://doi.org/10.1088/1367-2630/18/1/013034eng1367-2630Maslovski, Stanislav I.Simovski, Constantin RTretyakov, Sergei Ainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-11T09:22:46Zoai:estudogeral.uc.pt:10316/108726Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:24:59.828752Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Overcoming black body radiation limit in free space: metamaterial superemitter
title Overcoming black body radiation limit in free space: metamaterial superemitter
spellingShingle Overcoming black body radiation limit in free space: metamaterial superemitter
Maslovski, Stanislav I.
title_short Overcoming black body radiation limit in free space: metamaterial superemitter
title_full Overcoming black body radiation limit in free space: metamaterial superemitter
title_fullStr Overcoming black body radiation limit in free space: metamaterial superemitter
title_full_unstemmed Overcoming black body radiation limit in free space: metamaterial superemitter
title_sort Overcoming black body radiation limit in free space: metamaterial superemitter
author Maslovski, Stanislav I.
author_facet Maslovski, Stanislav I.
Simovski, Constantin R
Tretyakov, Sergei A
author_role author
author2 Simovski, Constantin R
Tretyakov, Sergei A
author2_role author
author
dc.contributor.author.fl_str_mv Maslovski, Stanislav I.
Simovski, Constantin R
Tretyakov, Sergei A
description Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff–Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermophotovoltaic systems and other devices.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/108726
http://hdl.handle.net/10316/108726
https://doi.org/10.1088/1367-2630/18/1/013034
url http://hdl.handle.net/10316/108726
https://doi.org/10.1088/1367-2630/18/1/013034
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1367-2630
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Physics Publishing
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134132892073984