Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide

Detalhes bibliográficos
Autor(a) principal: Ferreiro, Elisabete
Data de Publicação: 2004
Outros Autores: Oliveira, Catarina R., Pereira, Cláudia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/8426
https://doi.org/10.1002/jnr.20135
Resumo: Studies with in-vitro-cultured neurons treated with amyloid-beta (Abeta) peptides demonstrated neuronal loss by apoptosis that is due, at least in part, to the perturbation of intracellular Ca2+ homeostasis. In addition, it was shown that an endoplasmic reticulum (ER)-specific apoptotic pathway mediated by caspase-12, which is activated upon the perturbation of ER Ca2+ homeostasis, may contribute to Abeta toxicity. To elucidate the involvement of deregulation of ER Ca2+ homeostasis in neuronal death induced by Abeta peptides, we have performed a comparative study using the synthetic peptides Abeta25-35 or Abeta1-40 and thapsigargin, a selective inhibitor of Ca2+ uptake into the ER. Incubation of cortical neurons with thapsigargin (2.5 muM) increased the intracellular Ca2+ levels and activated caspase-3, leading to a significant increase in the number of apoptotic cells. Similarly, upon incubation of cortical cultures with the Abeta peptides (Abeta25-35, 25 muM; Abeta1-40, 0.5 muM), we observed a significant increase in [Ca2+]i, in caspase-3-like activity, and in number of neurons exhibiting apoptotic morphology. The role of ER Ca2+ release through ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (IP3R) in Abeta neurotoxicity has been also investigated. Dantrolene and xestospongin C, inhibitors of ER Ca2+ release through RyR or IP3R, were able to prevent the increase in [Ca2+]i and the activation of caspase-3 and to protect partially against apoptosis induced by treatment with Abeta25-35 or Abeta1-40. In conclusion, our results demonstrate that the release of Ca2+ from the ER, mediated by both RyR and IP3R, is involved in Abeta toxicity and can contribute, together with the activation of other intracellular neurotoxic mechanisms, to Abeta-induced neuronal death. This study suggests that Abeta accumulation may have a key role in the pathogenesis of AD as a result of deregulation of ER Ca2+ homeostasis. © 2004 Wiley-Liss, Inc.
id RCAP_db4a3927f8355a5d43a33199368d2bb8
oai_identifier_str oai:estudogeral.uc.pt:10316/8426
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptideStudies with in-vitro-cultured neurons treated with amyloid-beta (Abeta) peptides demonstrated neuronal loss by apoptosis that is due, at least in part, to the perturbation of intracellular Ca2+ homeostasis. In addition, it was shown that an endoplasmic reticulum (ER)-specific apoptotic pathway mediated by caspase-12, which is activated upon the perturbation of ER Ca2+ homeostasis, may contribute to Abeta toxicity. To elucidate the involvement of deregulation of ER Ca2+ homeostasis in neuronal death induced by Abeta peptides, we have performed a comparative study using the synthetic peptides Abeta25-35 or Abeta1-40 and thapsigargin, a selective inhibitor of Ca2+ uptake into the ER. Incubation of cortical neurons with thapsigargin (2.5 muM) increased the intracellular Ca2+ levels and activated caspase-3, leading to a significant increase in the number of apoptotic cells. Similarly, upon incubation of cortical cultures with the Abeta peptides (Abeta25-35, 25 muM; Abeta1-40, 0.5 muM), we observed a significant increase in [Ca2+]i, in caspase-3-like activity, and in number of neurons exhibiting apoptotic morphology. The role of ER Ca2+ release through ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (IP3R) in Abeta neurotoxicity has been also investigated. Dantrolene and xestospongin C, inhibitors of ER Ca2+ release through RyR or IP3R, were able to prevent the increase in [Ca2+]i and the activation of caspase-3 and to protect partially against apoptosis induced by treatment with Abeta25-35 or Abeta1-40. In conclusion, our results demonstrate that the release of Ca2+ from the ER, mediated by both RyR and IP3R, is involved in Abeta toxicity and can contribute, together with the activation of other intracellular neurotoxic mechanisms, to Abeta-induced neuronal death. This study suggests that Abeta accumulation may have a key role in the pathogenesis of AD as a result of deregulation of ER Ca2+ homeostasis. © 2004 Wiley-Liss, Inc.2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/8426http://hdl.handle.net/10316/8426https://doi.org/10.1002/jnr.20135engJournal of Neuroscience Research. 76:6 (2004) 872-880Ferreiro, ElisabeteOliveira, Catarina R.Pereira, Cláudiainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-10-11T08:54:42Zoai:estudogeral.uc.pt:10316/8426Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:43:30.767754Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide
title Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide
spellingShingle Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide
Ferreiro, Elisabete
title_short Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide
title_full Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide
title_fullStr Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide
title_full_unstemmed Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide
title_sort Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide
author Ferreiro, Elisabete
author_facet Ferreiro, Elisabete
Oliveira, Catarina R.
Pereira, Cláudia
author_role author
author2 Oliveira, Catarina R.
Pereira, Cláudia
author2_role author
author
dc.contributor.author.fl_str_mv Ferreiro, Elisabete
Oliveira, Catarina R.
Pereira, Cláudia
description Studies with in-vitro-cultured neurons treated with amyloid-beta (Abeta) peptides demonstrated neuronal loss by apoptosis that is due, at least in part, to the perturbation of intracellular Ca2+ homeostasis. In addition, it was shown that an endoplasmic reticulum (ER)-specific apoptotic pathway mediated by caspase-12, which is activated upon the perturbation of ER Ca2+ homeostasis, may contribute to Abeta toxicity. To elucidate the involvement of deregulation of ER Ca2+ homeostasis in neuronal death induced by Abeta peptides, we have performed a comparative study using the synthetic peptides Abeta25-35 or Abeta1-40 and thapsigargin, a selective inhibitor of Ca2+ uptake into the ER. Incubation of cortical neurons with thapsigargin (2.5 muM) increased the intracellular Ca2+ levels and activated caspase-3, leading to a significant increase in the number of apoptotic cells. Similarly, upon incubation of cortical cultures with the Abeta peptides (Abeta25-35, 25 muM; Abeta1-40, 0.5 muM), we observed a significant increase in [Ca2+]i, in caspase-3-like activity, and in number of neurons exhibiting apoptotic morphology. The role of ER Ca2+ release through ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (IP3R) in Abeta neurotoxicity has been also investigated. Dantrolene and xestospongin C, inhibitors of ER Ca2+ release through RyR or IP3R, were able to prevent the increase in [Ca2+]i and the activation of caspase-3 and to protect partially against apoptosis induced by treatment with Abeta25-35 or Abeta1-40. In conclusion, our results demonstrate that the release of Ca2+ from the ER, mediated by both RyR and IP3R, is involved in Abeta toxicity and can contribute, together with the activation of other intracellular neurotoxic mechanisms, to Abeta-induced neuronal death. This study suggests that Abeta accumulation may have a key role in the pathogenesis of AD as a result of deregulation of ER Ca2+ homeostasis. © 2004 Wiley-Liss, Inc.
publishDate 2004
dc.date.none.fl_str_mv 2004
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/8426
http://hdl.handle.net/10316/8426
https://doi.org/10.1002/jnr.20135
url http://hdl.handle.net/10316/8426
https://doi.org/10.1002/jnr.20135
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Neuroscience Research. 76:6 (2004) 872-880
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133707229986816