Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/8426 https://doi.org/10.1002/jnr.20135 |
Resumo: | Studies with in-vitro-cultured neurons treated with amyloid-beta (Abeta) peptides demonstrated neuronal loss by apoptosis that is due, at least in part, to the perturbation of intracellular Ca2+ homeostasis. In addition, it was shown that an endoplasmic reticulum (ER)-specific apoptotic pathway mediated by caspase-12, which is activated upon the perturbation of ER Ca2+ homeostasis, may contribute to Abeta toxicity. To elucidate the involvement of deregulation of ER Ca2+ homeostasis in neuronal death induced by Abeta peptides, we have performed a comparative study using the synthetic peptides Abeta25-35 or Abeta1-40 and thapsigargin, a selective inhibitor of Ca2+ uptake into the ER. Incubation of cortical neurons with thapsigargin (2.5 muM) increased the intracellular Ca2+ levels and activated caspase-3, leading to a significant increase in the number of apoptotic cells. Similarly, upon incubation of cortical cultures with the Abeta peptides (Abeta25-35, 25 muM; Abeta1-40, 0.5 muM), we observed a significant increase in [Ca2+]i, in caspase-3-like activity, and in number of neurons exhibiting apoptotic morphology. The role of ER Ca2+ release through ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (IP3R) in Abeta neurotoxicity has been also investigated. Dantrolene and xestospongin C, inhibitors of ER Ca2+ release through RyR or IP3R, were able to prevent the increase in [Ca2+]i and the activation of caspase-3 and to protect partially against apoptosis induced by treatment with Abeta25-35 or Abeta1-40. In conclusion, our results demonstrate that the release of Ca2+ from the ER, mediated by both RyR and IP3R, is involved in Abeta toxicity and can contribute, together with the activation of other intracellular neurotoxic mechanisms, to Abeta-induced neuronal death. This study suggests that Abeta accumulation may have a key role in the pathogenesis of AD as a result of deregulation of ER Ca2+ homeostasis. © 2004 Wiley-Liss, Inc. |
id |
RCAP_db4a3927f8355a5d43a33199368d2bb8 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/8426 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptideStudies with in-vitro-cultured neurons treated with amyloid-beta (Abeta) peptides demonstrated neuronal loss by apoptosis that is due, at least in part, to the perturbation of intracellular Ca2+ homeostasis. In addition, it was shown that an endoplasmic reticulum (ER)-specific apoptotic pathway mediated by caspase-12, which is activated upon the perturbation of ER Ca2+ homeostasis, may contribute to Abeta toxicity. To elucidate the involvement of deregulation of ER Ca2+ homeostasis in neuronal death induced by Abeta peptides, we have performed a comparative study using the synthetic peptides Abeta25-35 or Abeta1-40 and thapsigargin, a selective inhibitor of Ca2+ uptake into the ER. Incubation of cortical neurons with thapsigargin (2.5 muM) increased the intracellular Ca2+ levels and activated caspase-3, leading to a significant increase in the number of apoptotic cells. Similarly, upon incubation of cortical cultures with the Abeta peptides (Abeta25-35, 25 muM; Abeta1-40, 0.5 muM), we observed a significant increase in [Ca2+]i, in caspase-3-like activity, and in number of neurons exhibiting apoptotic morphology. The role of ER Ca2+ release through ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (IP3R) in Abeta neurotoxicity has been also investigated. Dantrolene and xestospongin C, inhibitors of ER Ca2+ release through RyR or IP3R, were able to prevent the increase in [Ca2+]i and the activation of caspase-3 and to protect partially against apoptosis induced by treatment with Abeta25-35 or Abeta1-40. In conclusion, our results demonstrate that the release of Ca2+ from the ER, mediated by both RyR and IP3R, is involved in Abeta toxicity and can contribute, together with the activation of other intracellular neurotoxic mechanisms, to Abeta-induced neuronal death. This study suggests that Abeta accumulation may have a key role in the pathogenesis of AD as a result of deregulation of ER Ca2+ homeostasis. © 2004 Wiley-Liss, Inc.2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/8426http://hdl.handle.net/10316/8426https://doi.org/10.1002/jnr.20135engJournal of Neuroscience Research. 76:6 (2004) 872-880Ferreiro, ElisabeteOliveira, Catarina R.Pereira, Cláudiainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-10-11T08:54:42Zoai:estudogeral.uc.pt:10316/8426Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:43:30.767754Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide |
title |
Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide |
spellingShingle |
Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide Ferreiro, Elisabete |
title_short |
Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide |
title_full |
Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide |
title_fullStr |
Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide |
title_full_unstemmed |
Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide |
title_sort |
Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide |
author |
Ferreiro, Elisabete |
author_facet |
Ferreiro, Elisabete Oliveira, Catarina R. Pereira, Cláudia |
author_role |
author |
author2 |
Oliveira, Catarina R. Pereira, Cláudia |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ferreiro, Elisabete Oliveira, Catarina R. Pereira, Cláudia |
description |
Studies with in-vitro-cultured neurons treated with amyloid-beta (Abeta) peptides demonstrated neuronal loss by apoptosis that is due, at least in part, to the perturbation of intracellular Ca2+ homeostasis. In addition, it was shown that an endoplasmic reticulum (ER)-specific apoptotic pathway mediated by caspase-12, which is activated upon the perturbation of ER Ca2+ homeostasis, may contribute to Abeta toxicity. To elucidate the involvement of deregulation of ER Ca2+ homeostasis in neuronal death induced by Abeta peptides, we have performed a comparative study using the synthetic peptides Abeta25-35 or Abeta1-40 and thapsigargin, a selective inhibitor of Ca2+ uptake into the ER. Incubation of cortical neurons with thapsigargin (2.5 muM) increased the intracellular Ca2+ levels and activated caspase-3, leading to a significant increase in the number of apoptotic cells. Similarly, upon incubation of cortical cultures with the Abeta peptides (Abeta25-35, 25 muM; Abeta1-40, 0.5 muM), we observed a significant increase in [Ca2+]i, in caspase-3-like activity, and in number of neurons exhibiting apoptotic morphology. The role of ER Ca2+ release through ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (IP3R) in Abeta neurotoxicity has been also investigated. Dantrolene and xestospongin C, inhibitors of ER Ca2+ release through RyR or IP3R, were able to prevent the increase in [Ca2+]i and the activation of caspase-3 and to protect partially against apoptosis induced by treatment with Abeta25-35 or Abeta1-40. In conclusion, our results demonstrate that the release of Ca2+ from the ER, mediated by both RyR and IP3R, is involved in Abeta toxicity and can contribute, together with the activation of other intracellular neurotoxic mechanisms, to Abeta-induced neuronal death. This study suggests that Abeta accumulation may have a key role in the pathogenesis of AD as a result of deregulation of ER Ca2+ homeostasis. © 2004 Wiley-Liss, Inc. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/8426 http://hdl.handle.net/10316/8426 https://doi.org/10.1002/jnr.20135 |
url |
http://hdl.handle.net/10316/8426 https://doi.org/10.1002/jnr.20135 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Neuroscience Research. 76:6 (2004) 872-880 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133707229986816 |