Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/20557 |
Resumo: | A commonly applied strategy in the field of tissue engineering (TE) is the use of temporary three-dimensional scaffolds for supporting and guiding tissue formation in various in vitro strategies and in vivo regeneration approaches. The interactions of these scaffolds with highly sensitive bioentities such as living cells and tissues primarily occur through the material surface. Hence, surface chemistry and topological features have principal roles in coordinating biological events at the molecular, cellular and tissue levels on timescales ranging from seconds to weeks. However, tailoring the surface properties of scaffolds with a complex shape and architecture remains a challenge in materials science. Commonly applied wet chemical treatments often involve the use of toxic solvents whose oddments in the construct could be fatal in the subsequent application. Aiming to shorten the culture time in vitro (i.e. prior the implantation of the construct), in this work we propose a modification of previously described bone TE scaffolds made from a blend of starch with polycaprolactone (SPCL). The modification method involves surface grafting of sulfonic or phosphonic groups via plasma-induced polymerization of vinyl sulfonic and vinyl phosphonic acid, respectively. We demonstrate herein that the presence of these anionic functional groups can modulate cell adhesion mediated through the adsorbed proteins (from the culture medium). Under the conditions studied, both vitronectin adsorption and osteoblast proliferation and viability increased in the order SPCL!sulfonic-grafted SPCL < phosphonic-grafted SPCL. The results revealed that plasmainduced polymerization is an excellent alternative route, when compared to the commonly used wet chemical treatments, for the surface functionalization of biodevices with complex shape and porosity. |
id |
RCAP_dba4d125fe9cc1c86a8a84c52e796680 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/20557 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro studySurface modificationPlasma polymerizationOsteoblastScaffoldScience & TechnologyA commonly applied strategy in the field of tissue engineering (TE) is the use of temporary three-dimensional scaffolds for supporting and guiding tissue formation in various in vitro strategies and in vivo regeneration approaches. The interactions of these scaffolds with highly sensitive bioentities such as living cells and tissues primarily occur through the material surface. Hence, surface chemistry and topological features have principal roles in coordinating biological events at the molecular, cellular and tissue levels on timescales ranging from seconds to weeks. However, tailoring the surface properties of scaffolds with a complex shape and architecture remains a challenge in materials science. Commonly applied wet chemical treatments often involve the use of toxic solvents whose oddments in the construct could be fatal in the subsequent application. Aiming to shorten the culture time in vitro (i.e. prior the implantation of the construct), in this work we propose a modification of previously described bone TE scaffolds made from a blend of starch with polycaprolactone (SPCL). The modification method involves surface grafting of sulfonic or phosphonic groups via plasma-induced polymerization of vinyl sulfonic and vinyl phosphonic acid, respectively. We demonstrate herein that the presence of these anionic functional groups can modulate cell adhesion mediated through the adsorbed proteins (from the culture medium). Under the conditions studied, both vitronectin adsorption and osteoblast proliferation and viability increased in the order SPCL!sulfonic-grafted SPCL < phosphonic-grafted SPCL. The results revealed that plasmainduced polymerization is an excellent alternative route, when compared to the commonly used wet chemical treatments, for the surface functionalization of biodevices with complex shape and porosity.The authors acknowledge funding from EU Marie Curie Actions, Alea Jacta Est (MEST-CT-2004-008104) and the Portuguese Foundation for Science and Technology (FCT) (SFRH/BPD/34545/2007). This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283). The authors also acknowledge Dr. M.I. Santos and C. Serra for their assistance on the CLSM and XPS experiments.ElsevierUniversidade do MinhoLópez Pérez, Paula M.Silva, Ricardo M. P. daSousa, R. A.Pashkuleva, I.Reis, R. L.20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20557eng1742-706110.1016/j.actbio.2010.03.00820226283http://www.sciencedirect.com/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:30:02Zoai:repositorium.sdum.uminho.pt:1822/20557Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:25:08.113869Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study |
title |
Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study |
spellingShingle |
Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study López Pérez, Paula M. Surface modification Plasma polymerization Osteoblast Scaffold Science & Technology |
title_short |
Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study |
title_full |
Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study |
title_fullStr |
Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study |
title_full_unstemmed |
Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study |
title_sort |
Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study |
author |
López Pérez, Paula M. |
author_facet |
López Pérez, Paula M. Silva, Ricardo M. P. da Sousa, R. A. Pashkuleva, I. Reis, R. L. |
author_role |
author |
author2 |
Silva, Ricardo M. P. da Sousa, R. A. Pashkuleva, I. Reis, R. L. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
López Pérez, Paula M. Silva, Ricardo M. P. da Sousa, R. A. Pashkuleva, I. Reis, R. L. |
dc.subject.por.fl_str_mv |
Surface modification Plasma polymerization Osteoblast Scaffold Science & Technology |
topic |
Surface modification Plasma polymerization Osteoblast Scaffold Science & Technology |
description |
A commonly applied strategy in the field of tissue engineering (TE) is the use of temporary three-dimensional scaffolds for supporting and guiding tissue formation in various in vitro strategies and in vivo regeneration approaches. The interactions of these scaffolds with highly sensitive bioentities such as living cells and tissues primarily occur through the material surface. Hence, surface chemistry and topological features have principal roles in coordinating biological events at the molecular, cellular and tissue levels on timescales ranging from seconds to weeks. However, tailoring the surface properties of scaffolds with a complex shape and architecture remains a challenge in materials science. Commonly applied wet chemical treatments often involve the use of toxic solvents whose oddments in the construct could be fatal in the subsequent application. Aiming to shorten the culture time in vitro (i.e. prior the implantation of the construct), in this work we propose a modification of previously described bone TE scaffolds made from a blend of starch with polycaprolactone (SPCL). The modification method involves surface grafting of sulfonic or phosphonic groups via plasma-induced polymerization of vinyl sulfonic and vinyl phosphonic acid, respectively. We demonstrate herein that the presence of these anionic functional groups can modulate cell adhesion mediated through the adsorbed proteins (from the culture medium). Under the conditions studied, both vitronectin adsorption and osteoblast proliferation and viability increased in the order SPCL!sulfonic-grafted SPCL < phosphonic-grafted SPCL. The results revealed that plasmainduced polymerization is an excellent alternative route, when compared to the commonly used wet chemical treatments, for the surface functionalization of biodevices with complex shape and porosity. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/20557 |
url |
http://hdl.handle.net/1822/20557 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1742-7061 10.1016/j.actbio.2010.03.008 20226283 http://www.sciencedirect.com/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132733813817344 |