A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets

Detalhes bibliográficos
Autor(a) principal: Kostyukova, O. I.
Data de Publicação: 2012
Outros Autores: Tchemisova, T. V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/8888
Resumo: We consider convex Semi-Infinite Programming (SIP) problems with polyhedral index sets. For these problems, we generalize the concepts of immobile indices and their immobility orders (that are objective and important characteristics of the feasible sets permitting to formulate new efficient optimality conditions. We describe and justify a finite constructive algorithm (DIIPS algorithm) that determines immobile indices and their immobility orders along the feasible directions. This algorithm is based on a representation of the cones of feasible directions of polyhedral index sets in the form of linear combinations of the extremal rays {and on the approach described in our previous papers for the cases of multidimensional immobile sets of more simple structure. A constructive procedure of determination of the extremal rays is described and an example illustrating the application of the DIIPS algorithm is provided.
id RCAP_dbd3746d2ce5a0c191aa085e3af98961
oai_identifier_str oai:ria.ua.pt:10773/8888
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index setsSemi-Infinite Programming (SIP)Convex Programming (CP)immobile indeximmobility ordercone of feasible directionsextremal rayWe consider convex Semi-Infinite Programming (SIP) problems with polyhedral index sets. For these problems, we generalize the concepts of immobile indices and their immobility orders (that are objective and important characteristics of the feasible sets permitting to formulate new efficient optimality conditions. We describe and justify a finite constructive algorithm (DIIPS algorithm) that determines immobile indices and their immobility orders along the feasible directions. This algorithm is based on a representation of the cones of feasible directions of polyhedral index sets in the form of linear combinations of the extremal rays {and on the approach described in our previous papers for the cases of multidimensional immobile sets of more simple structure. A constructive procedure of determination of the extremal rays is described and an example illustrating the application of the DIIPS algorithm is provided.Universidade de Aveiro2012-08-01T16:31:34Z2012-06-29T00:00:00Z2012-06-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/8888engKostyukova, O. I.Tchemisova, T. V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:14:35Zoai:ria.ua.pt:10773/8888Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:45:42.491326Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets
title A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets
spellingShingle A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets
Kostyukova, O. I.
Semi-Infinite Programming (SIP)
Convex Programming (CP)
immobile index
immobility order
cone of feasible directions
extremal ray
title_short A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets
title_full A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets
title_fullStr A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets
title_full_unstemmed A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets
title_sort A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets
author Kostyukova, O. I.
author_facet Kostyukova, O. I.
Tchemisova, T. V.
author_role author
author2 Tchemisova, T. V.
author2_role author
dc.contributor.author.fl_str_mv Kostyukova, O. I.
Tchemisova, T. V.
dc.subject.por.fl_str_mv Semi-Infinite Programming (SIP)
Convex Programming (CP)
immobile index
immobility order
cone of feasible directions
extremal ray
topic Semi-Infinite Programming (SIP)
Convex Programming (CP)
immobile index
immobility order
cone of feasible directions
extremal ray
description We consider convex Semi-Infinite Programming (SIP) problems with polyhedral index sets. For these problems, we generalize the concepts of immobile indices and their immobility orders (that are objective and important characteristics of the feasible sets permitting to formulate new efficient optimality conditions. We describe and justify a finite constructive algorithm (DIIPS algorithm) that determines immobile indices and their immobility orders along the feasible directions. This algorithm is based on a representation of the cones of feasible directions of polyhedral index sets in the form of linear combinations of the extremal rays {and on the approach described in our previous papers for the cases of multidimensional immobile sets of more simple structure. A constructive procedure of determination of the extremal rays is described and an example illustrating the application of the DIIPS algorithm is provided.
publishDate 2012
dc.date.none.fl_str_mv 2012-08-01T16:31:34Z
2012-06-29T00:00:00Z
2012-06-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/8888
url http://hdl.handle.net/10773/8888
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137508721688576