A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/8888 |
Resumo: | We consider convex Semi-Infinite Programming (SIP) problems with polyhedral index sets. For these problems, we generalize the concepts of immobile indices and their immobility orders (that are objective and important characteristics of the feasible sets permitting to formulate new efficient optimality conditions. We describe and justify a finite constructive algorithm (DIIPS algorithm) that determines immobile indices and their immobility orders along the feasible directions. This algorithm is based on a representation of the cones of feasible directions of polyhedral index sets in the form of linear combinations of the extremal rays {and on the approach described in our previous papers for the cases of multidimensional immobile sets of more simple structure. A constructive procedure of determination of the extremal rays is described and an example illustrating the application of the DIIPS algorithm is provided. |
id |
RCAP_dbd3746d2ce5a0c191aa085e3af98961 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/8888 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index setsSemi-Infinite Programming (SIP)Convex Programming (CP)immobile indeximmobility ordercone of feasible directionsextremal rayWe consider convex Semi-Infinite Programming (SIP) problems with polyhedral index sets. For these problems, we generalize the concepts of immobile indices and their immobility orders (that are objective and important characteristics of the feasible sets permitting to formulate new efficient optimality conditions. We describe and justify a finite constructive algorithm (DIIPS algorithm) that determines immobile indices and their immobility orders along the feasible directions. This algorithm is based on a representation of the cones of feasible directions of polyhedral index sets in the form of linear combinations of the extremal rays {and on the approach described in our previous papers for the cases of multidimensional immobile sets of more simple structure. A constructive procedure of determination of the extremal rays is described and an example illustrating the application of the DIIPS algorithm is provided.Universidade de Aveiro2012-08-01T16:31:34Z2012-06-29T00:00:00Z2012-06-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/8888engKostyukova, O. I.Tchemisova, T. V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:14:35Zoai:ria.ua.pt:10773/8888Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:45:42.491326Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets |
title |
A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets |
spellingShingle |
A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets Kostyukova, O. I. Semi-Infinite Programming (SIP) Convex Programming (CP) immobile index immobility order cone of feasible directions extremal ray |
title_short |
A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets |
title_full |
A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets |
title_fullStr |
A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets |
title_full_unstemmed |
A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets |
title_sort |
A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets |
author |
Kostyukova, O. I. |
author_facet |
Kostyukova, O. I. Tchemisova, T. V. |
author_role |
author |
author2 |
Tchemisova, T. V. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Kostyukova, O. I. Tchemisova, T. V. |
dc.subject.por.fl_str_mv |
Semi-Infinite Programming (SIP) Convex Programming (CP) immobile index immobility order cone of feasible directions extremal ray |
topic |
Semi-Infinite Programming (SIP) Convex Programming (CP) immobile index immobility order cone of feasible directions extremal ray |
description |
We consider convex Semi-Infinite Programming (SIP) problems with polyhedral index sets. For these problems, we generalize the concepts of immobile indices and their immobility orders (that are objective and important characteristics of the feasible sets permitting to formulate new efficient optimality conditions. We describe and justify a finite constructive algorithm (DIIPS algorithm) that determines immobile indices and their immobility orders along the feasible directions. This algorithm is based on a representation of the cones of feasible directions of polyhedral index sets in the form of linear combinations of the extremal rays {and on the approach described in our previous papers for the cases of multidimensional immobile sets of more simple structure. A constructive procedure of determination of the extremal rays is described and an example illustrating the application of the DIIPS algorithm is provided. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-01T16:31:34Z 2012-06-29T00:00:00Z 2012-06-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/8888 |
url |
http://hdl.handle.net/10773/8888 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
publisher.none.fl_str_mv |
Universidade de Aveiro |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137508721688576 |