Editorial
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.25748/arp.15000 |
Resumo: | The current issue of ARP contains an excellent article on artificial intelligence (AI) and its application in the Radiology domain that I would like to draw the reader’s attention. AI is not really a newborn technique and the concept and naming was set up by John McCarthy during the 50’s to define a system that could reason like humans, being self-sufficient in terms of cognitive and learning capabilities. For the last few years AI has gained momentum in many medical fields and one in the forefront is undoubtedly radiology. The massive use of medical imaging together with unparalleled computational power paved the way to big data analytics and data mining, which form the common ground for AI. |
id |
RCAP_dc05dcaf307326193649d39cd67bb94c |
---|---|
oai_identifier_str |
oai:ojs.revistas.rcaap.pt:article/15000 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
EditorialEditorialEditoriaisThe current issue of ARP contains an excellent article on artificial intelligence (AI) and its application in the Radiology domain that I would like to draw the reader’s attention. AI is not really a newborn technique and the concept and naming was set up by John McCarthy during the 50’s to define a system that could reason like humans, being self-sufficient in terms of cognitive and learning capabilities. For the last few years AI has gained momentum in many medical fields and one in the forefront is undoubtedly radiology. The massive use of medical imaging together with unparalleled computational power paved the way to big data analytics and data mining, which form the common ground for AI.SPRMN2018-09-11T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://doi.org/10.25748/arp.15000por2183-13512183-1351Alves, Filipe Caseiroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-22T16:27:13Zoai:ojs.revistas.rcaap.pt:article/15000Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:00:01.390583Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Editorial Editorial |
title |
Editorial |
spellingShingle |
Editorial Alves, Filipe Caseiro Editoriais |
title_short |
Editorial |
title_full |
Editorial |
title_fullStr |
Editorial |
title_full_unstemmed |
Editorial |
title_sort |
Editorial |
author |
Alves, Filipe Caseiro |
author_facet |
Alves, Filipe Caseiro |
author_role |
author |
dc.contributor.author.fl_str_mv |
Alves, Filipe Caseiro |
dc.subject.por.fl_str_mv |
Editoriais |
topic |
Editoriais |
description |
The current issue of ARP contains an excellent article on artificial intelligence (AI) and its application in the Radiology domain that I would like to draw the reader’s attention. AI is not really a newborn technique and the concept and naming was set up by John McCarthy during the 50’s to define a system that could reason like humans, being self-sufficient in terms of cognitive and learning capabilities. For the last few years AI has gained momentum in many medical fields and one in the forefront is undoubtedly radiology. The massive use of medical imaging together with unparalleled computational power paved the way to big data analytics and data mining, which form the common ground for AI. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-11T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.25748/arp.15000 |
url |
https://doi.org/10.25748/arp.15000 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
2183-1351 2183-1351 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
SPRMN |
publisher.none.fl_str_mv |
SPRMN |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130466622636032 |