Discrete to dimensional physiological emotion classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/33692 |
Resumo: | Emotions play a very important role in human life. The way we communicate and interact with others, our actions, thoughts, are all influenced by them, whether in a positive or negative way. Unfortunately, there is a variety of mental diseases, like anxiety and depression, that are characterized by a prevalence of negative emotions, and in which people tend to have a higher difficulty in understanding their emotional state. Consequently, the importance of each one of us being able to identify their emotional state is crucial to guarantee a healthy control over emotions. The emotion recognition systems can be one of the solutions to help people identify and interpret their emotions, hence increasing their well-being and health. Studies in this area have explored different topics ranging from the type of signals and features to the method of feature selection and emotional classification. Furthermore, they also began to diverge in the approach of describing emotions, which can be discrete or dimensional. In this work, the two approaches were studied to understand the impact of the emotional description on the classification process and to conclude on the most adequate approach to identify emotions. To this end, it was created a database of the physiological signals: electrocardiogram, electrodermal activity and electromyogram of the medial frontalis and trapezius muscles. An exploratory analysis was performed with these data revealing that the electrocardiogram and electrodermal activity represent the most informative in emotion discrimination. Nevertheless, in a multivariable approach, the features from electromyogram reveal to be useful on emotion classification. The approach initially studied was based on a discrete model of emotions, however, misclassification of some observations led to considering the hypothesis of testing a dimensional model (valence/arousal). This model proved to be more robust than the previous one, which led to the conclusion that it is better adapted to both emotional response and the individual response to the stimulus, confirming its best description of the emotion. |
id |
RCAP_dc1eb203cbcddd721ddce8651e7451f8 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/33692 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Discrete to dimensional physiological emotion classificationEmotionEmotion elicitationPhysiological signalsClassificationDiscrete modelDimensional modelEmotions play a very important role in human life. The way we communicate and interact with others, our actions, thoughts, are all influenced by them, whether in a positive or negative way. Unfortunately, there is a variety of mental diseases, like anxiety and depression, that are characterized by a prevalence of negative emotions, and in which people tend to have a higher difficulty in understanding their emotional state. Consequently, the importance of each one of us being able to identify their emotional state is crucial to guarantee a healthy control over emotions. The emotion recognition systems can be one of the solutions to help people identify and interpret their emotions, hence increasing their well-being and health. Studies in this area have explored different topics ranging from the type of signals and features to the method of feature selection and emotional classification. Furthermore, they also began to diverge in the approach of describing emotions, which can be discrete or dimensional. In this work, the two approaches were studied to understand the impact of the emotional description on the classification process and to conclude on the most adequate approach to identify emotions. To this end, it was created a database of the physiological signals: electrocardiogram, electrodermal activity and electromyogram of the medial frontalis and trapezius muscles. An exploratory analysis was performed with these data revealing that the electrocardiogram and electrodermal activity represent the most informative in emotion discrimination. Nevertheless, in a multivariable approach, the features from electromyogram reveal to be useful on emotion classification. The approach initially studied was based on a discrete model of emotions, however, misclassification of some observations led to considering the hypothesis of testing a dimensional model (valence/arousal). This model proved to be more robust than the previous one, which led to the conclusion that it is better adapted to both emotional response and the individual response to the stimulus, confirming its best description of the emotion.As emoções desempenham um papel muito importante na vida humana. A maneira como nós comunicamos e interagimos uns com os outros, as nossas ações e pensamentos, são todos influenciados por elas, seja de uma forma positiva ou negativa. Infelizmente, existe uma variedade de doenças mentais, como a ansiedade e depressão, que são caracterizadas por uma prevalência de emoções negativas e nas quais as pessoas tendem a ter uma maior dificuldade em compreender o seu estado emocional. Consequentemente, é muito importante que cada um de nós seja capaz de identificar as nossas emoções, de forma a garantir que as conseguimos controlar e que o efeito contrário não ocorra. Os sistemas de reconhecimento de emoções podem ser uma das soluções para ajudar as pessoas a identificar as suas emoções, levando a uma melhoria do seu bem-estar e saúde. Os estudos nesta área têm explorado diferentes tópicos que vão desde o tipo de sinais e características, ao método de seleção de características e de classificação emocional. Além disso, também começaram a divergir na abordagem para descrever as emoções, que pode ser discreta (e.g. alegria, medo) ou dimensional (e.g. nível de agradabilidade, ativação). Neste trabalho, as duas abordagens foram estudadas de forma a compreender o impacto da descrição emocional no processo de classificação e, assim, concluir sobre a abordagem mais adequada para identificar as emoções. Para tal, foi criada uma base de dados constituída pelos sinais fisiológicos: eletrocardiograma, atividade eletrodérmica e eletromiograma dos músculos medial frontal e trapézio. A análise exploratória destes dados permitiu descrever as emoções do ponto de vista da resposta fisiológica. O eletrocardiograma e a atividade eletrodérmica apresentaram-se como sendo os sinais que melhor discriminam a atividade emocional (têm o maior número de características que distinguem os estados emocionais). Numa análise multivariável, verificou-se que a informação do eletromiograma também era uma fonte discriminatória, uma vez que as suas características eram sistematicamente selecionadas pelo classificador. A abordagem inicialmente estudada assentou sobre o modelo discreto de emoções, contudo a classificação errada de algumas observações levou a ponderar a hipótese de testar um modelo dimensional (agradabilidade/ativação). Este modelo revelou-se mais robusto que o anterior, o que levou a concluir que se adapta melhor quer à resposta da emoção, quer à resposta individual de cada pessoa ao estímulo. Comprovando assim a sua melhor descrição da emoção.2022-12-03T00:00:00Z2021-11-22T00:00:00Z2021-11-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33692engAlves, Carolina Fernandesinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:37:01Zoai:ria.ua.pt:10773/33692Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:37:01Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Discrete to dimensional physiological emotion classification |
title |
Discrete to dimensional physiological emotion classification |
spellingShingle |
Discrete to dimensional physiological emotion classification Alves, Carolina Fernandes Emotion Emotion elicitation Physiological signals Classification Discrete model Dimensional model |
title_short |
Discrete to dimensional physiological emotion classification |
title_full |
Discrete to dimensional physiological emotion classification |
title_fullStr |
Discrete to dimensional physiological emotion classification |
title_full_unstemmed |
Discrete to dimensional physiological emotion classification |
title_sort |
Discrete to dimensional physiological emotion classification |
author |
Alves, Carolina Fernandes |
author_facet |
Alves, Carolina Fernandes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Alves, Carolina Fernandes |
dc.subject.por.fl_str_mv |
Emotion Emotion elicitation Physiological signals Classification Discrete model Dimensional model |
topic |
Emotion Emotion elicitation Physiological signals Classification Discrete model Dimensional model |
description |
Emotions play a very important role in human life. The way we communicate and interact with others, our actions, thoughts, are all influenced by them, whether in a positive or negative way. Unfortunately, there is a variety of mental diseases, like anxiety and depression, that are characterized by a prevalence of negative emotions, and in which people tend to have a higher difficulty in understanding their emotional state. Consequently, the importance of each one of us being able to identify their emotional state is crucial to guarantee a healthy control over emotions. The emotion recognition systems can be one of the solutions to help people identify and interpret their emotions, hence increasing their well-being and health. Studies in this area have explored different topics ranging from the type of signals and features to the method of feature selection and emotional classification. Furthermore, they also began to diverge in the approach of describing emotions, which can be discrete or dimensional. In this work, the two approaches were studied to understand the impact of the emotional description on the classification process and to conclude on the most adequate approach to identify emotions. To this end, it was created a database of the physiological signals: electrocardiogram, electrodermal activity and electromyogram of the medial frontalis and trapezius muscles. An exploratory analysis was performed with these data revealing that the electrocardiogram and electrodermal activity represent the most informative in emotion discrimination. Nevertheless, in a multivariable approach, the features from electromyogram reveal to be useful on emotion classification. The approach initially studied was based on a discrete model of emotions, however, misclassification of some observations led to considering the hypothesis of testing a dimensional model (valence/arousal). This model proved to be more robust than the previous one, which led to the conclusion that it is better adapted to both emotional response and the individual response to the stimulus, confirming its best description of the emotion. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-22T00:00:00Z 2021-11-22 2022-12-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/33692 |
url |
http://hdl.handle.net/10773/33692 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543808064159744 |