Ultrasonography as a method of characterizing abdominal fat tissue

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Ricardo Teresa
Data de Publicação: 2022
Outros Autores: Leitão, Daniel, Dinis, Luís, Ferreira, Aida
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
DOI: 10.25758/set.2213
Texto Completo: https://doi.org/10.25758/set.2213
Resumo: Aim of the study – To compare the thickness of subcutaneous, preperitoneal, and visceral adipose tissue measured by ultrasonography (US) and relate them to the value of Body Mass Index (BMI). Methods – Weight, height, and the abdominal perimeter were determined in 218 volunteers (177 females and 41 males, aged between 18 and 33 years, with a body mass index between 20.03 and 37.27kg/m2), later submitted to abdominal ultrasonography. Further, four lifestyle questions were answered by the volunteers. Results – The US allowed to quantify and classify objectively and reproducibly subcutaneous adipose tissue, preperitoneal and visceral, for p<0.01. Pearson's correlation (p<0.01) did not show inter-observer variability in US measurements of subcutaneous adipose tissue (r=0.9871), preperitoneal (r=0.9003), and visceral (r=0.9407). A strong linear correlation between BMI with subcutaneous adipose tissue (r=0.64) and with preperitoneal (r=0.56) was identified. It was verified that the US could classify the genus based on the thickness of the intra-abdominal adipose tissue, abdominal perimeter, and BMI with a total accuracy of 86.69%. Conclusions – US shows an objective and capable method in the characterization and differentiation of intra-abdominal adipose tissue. The combined use of biometrics (except weight and height) and US data allows a correct estimation of BMI. Future studies are needed to understand the usefulness of the Deep Learning frameworks in automatically detecting different types of abdominal adipose tissue, thus guaranteeing the possibility of the US becoming a quick and preventive method for assessing obesity.
id RCAP_dc44fdb3208ffa3a594dc078af1fcc0f
oai_identifier_str oai:journals.ipl.pt:article/532
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Ultrasonography as a method of characterizing abdominal fat tissueA ultrassonografia enquanto método para caracterização do tecido adiposo abdominalUltrassonografiaObesidadeÍndice de massa corporalTecido adiposo subcutâneoUltrasonographyObesityBody Mass IndexSubcutaneous adipose tissueAim of the study – To compare the thickness of subcutaneous, preperitoneal, and visceral adipose tissue measured by ultrasonography (US) and relate them to the value of Body Mass Index (BMI). Methods – Weight, height, and the abdominal perimeter were determined in 218 volunteers (177 females and 41 males, aged between 18 and 33 years, with a body mass index between 20.03 and 37.27kg/m2), later submitted to abdominal ultrasonography. Further, four lifestyle questions were answered by the volunteers. Results – The US allowed to quantify and classify objectively and reproducibly subcutaneous adipose tissue, preperitoneal and visceral, for p<0.01. Pearson's correlation (p<0.01) did not show inter-observer variability in US measurements of subcutaneous adipose tissue (r=0.9871), preperitoneal (r=0.9003), and visceral (r=0.9407). A strong linear correlation between BMI with subcutaneous adipose tissue (r=0.64) and with preperitoneal (r=0.56) was identified. It was verified that the US could classify the genus based on the thickness of the intra-abdominal adipose tissue, abdominal perimeter, and BMI with a total accuracy of 86.69%. Conclusions – US shows an objective and capable method in the characterization and differentiation of intra-abdominal adipose tissue. The combined use of biometrics (except weight and height) and US data allows a correct estimation of BMI. Future studies are needed to understand the usefulness of the Deep Learning frameworks in automatically detecting different types of abdominal adipose tissue, thus guaranteeing the possibility of the US becoming a quick and preventive method for assessing obesity.Objetivo – Comparar a espessura do tecido adiposo subcutâneo, pré-peritoneal e visceral medida por ultrassonografia (US) e relacioná-la com o valor do Índice de Massa Corporal (IMC). Métodos – Duzentos e dezoito voluntários (177 do género feminino e 41 do masculino, entre os 18 e os 33 anos de idade e IMC entre 20,03 e 37,27kg/m2) foram submetidos a uma avaliação antropométrica (peso, altura, perímetro abdominal e questões sobre o estilo de vida) e a uma ultrassonografia abdominal. Resultados – A US permitiu quantificar e classificar de forma objetiva e reprodutível o tecido adiposo subcutâneo, pré-peritoneal e visceral, para p<0,01. A correlação de Pearson (com p<0,01) não evidenciou variabilidade interobservador nas medições por US do tecido adiposo subcutâneo (r=0,9871), pré-peritoneal (r=0,9003) e visceral (r=0,9407). Identificou-se uma  correlação linear forte entre o IMC com o  tecido adiposo subcutâneo (r=0,64) e uma correlação moderada com o pré-peritoneal (r=0,56). Verificou-se que a US consegue classificar o género (masculino/feminino) com base nas espessuras do tecido adiposo intra-abdominal, perímetro abdominal e IMC com uma exatidão total de 86,69%. Conclusões – A US demonstra ser um método objetivo e capaz na caracterização e diferenciação do tecido adiposo intra-abdominal. A utilização combinada de dados demográficos (excepto peso e altura) e US permite uma correta estimativa do IMC. Estudos futuros são necessários para se perceber a utilidade das frameworks de Deep Learning na deteção automática dos diferentes tipos de tecido adiposo abdominal, garantindo assim a possibilidade de a US se tornar um método preventivo e rápido para avaliação da obesidade.Escola Superior de Tecnologia da Saúde de Lisboa (Instituto Politécnico de Lisboa)2022-07-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.25758/set.2213oai:journals.ipl.pt:article/532Saúde e Tecnologia; No. 22 (2019): Novembro 2019; 13-21Saúde & Tecnologia; N.º 22 (2019): Novembro 2019; 13-211646-9704reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPporhttps://journals.ipl.pt/stecnologia/article/view/532https://doi.org/10.25758/set.2213https://journals.ipl.pt/stecnologia/article/view/532/458Direitos de Autor (c) 2022 Saúde & Tecnologiainfo:eu-repo/semantics/openAccessRibeiro, Ricardo TeresaLeitão, DanielDinis, LuísFerreira, Aida2022-12-20T10:58:43Zoai:journals.ipl.pt:article/532Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:21:21.232478Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Ultrasonography as a method of characterizing abdominal fat tissue
A ultrassonografia enquanto método para caracterização do tecido adiposo abdominal
title Ultrasonography as a method of characterizing abdominal fat tissue
spellingShingle Ultrasonography as a method of characterizing abdominal fat tissue
Ultrasonography as a method of characterizing abdominal fat tissue
Ribeiro, Ricardo Teresa
Ultrassonografia
Obesidade
Índice de massa corporal
Tecido adiposo subcutâneo
Ultrasonography
Obesity
Body Mass Index
Subcutaneous adipose tissue
Ribeiro, Ricardo Teresa
Ultrassonografia
Obesidade
Índice de massa corporal
Tecido adiposo subcutâneo
Ultrasonography
Obesity
Body Mass Index
Subcutaneous adipose tissue
title_short Ultrasonography as a method of characterizing abdominal fat tissue
title_full Ultrasonography as a method of characterizing abdominal fat tissue
title_fullStr Ultrasonography as a method of characterizing abdominal fat tissue
Ultrasonography as a method of characterizing abdominal fat tissue
title_full_unstemmed Ultrasonography as a method of characterizing abdominal fat tissue
Ultrasonography as a method of characterizing abdominal fat tissue
title_sort Ultrasonography as a method of characterizing abdominal fat tissue
author Ribeiro, Ricardo Teresa
author_facet Ribeiro, Ricardo Teresa
Ribeiro, Ricardo Teresa
Leitão, Daniel
Dinis, Luís
Ferreira, Aida
Leitão, Daniel
Dinis, Luís
Ferreira, Aida
author_role author
author2 Leitão, Daniel
Dinis, Luís
Ferreira, Aida
author2_role author
author
author
dc.contributor.author.fl_str_mv Ribeiro, Ricardo Teresa
Leitão, Daniel
Dinis, Luís
Ferreira, Aida
dc.subject.por.fl_str_mv Ultrassonografia
Obesidade
Índice de massa corporal
Tecido adiposo subcutâneo
Ultrasonography
Obesity
Body Mass Index
Subcutaneous adipose tissue
topic Ultrassonografia
Obesidade
Índice de massa corporal
Tecido adiposo subcutâneo
Ultrasonography
Obesity
Body Mass Index
Subcutaneous adipose tissue
description Aim of the study – To compare the thickness of subcutaneous, preperitoneal, and visceral adipose tissue measured by ultrasonography (US) and relate them to the value of Body Mass Index (BMI). Methods – Weight, height, and the abdominal perimeter were determined in 218 volunteers (177 females and 41 males, aged between 18 and 33 years, with a body mass index between 20.03 and 37.27kg/m2), later submitted to abdominal ultrasonography. Further, four lifestyle questions were answered by the volunteers. Results – The US allowed to quantify and classify objectively and reproducibly subcutaneous adipose tissue, preperitoneal and visceral, for p<0.01. Pearson's correlation (p<0.01) did not show inter-observer variability in US measurements of subcutaneous adipose tissue (r=0.9871), preperitoneal (r=0.9003), and visceral (r=0.9407). A strong linear correlation between BMI with subcutaneous adipose tissue (r=0.64) and with preperitoneal (r=0.56) was identified. It was verified that the US could classify the genus based on the thickness of the intra-abdominal adipose tissue, abdominal perimeter, and BMI with a total accuracy of 86.69%. Conclusions – US shows an objective and capable method in the characterization and differentiation of intra-abdominal adipose tissue. The combined use of biometrics (except weight and height) and US data allows a correct estimation of BMI. Future studies are needed to understand the usefulness of the Deep Learning frameworks in automatically detecting different types of abdominal adipose tissue, thus guaranteeing the possibility of the US becoming a quick and preventive method for assessing obesity.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.25758/set.2213
oai:journals.ipl.pt:article/532
url https://doi.org/10.25758/set.2213
identifier_str_mv oai:journals.ipl.pt:article/532
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://journals.ipl.pt/stecnologia/article/view/532
https://doi.org/10.25758/set.2213
https://journals.ipl.pt/stecnologia/article/view/532/458
dc.rights.driver.fl_str_mv Direitos de Autor (c) 2022 Saúde & Tecnologia
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos de Autor (c) 2022 Saúde & Tecnologia
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Escola Superior de Tecnologia da Saúde de Lisboa (Instituto Politécnico de Lisboa)
publisher.none.fl_str_mv Escola Superior de Tecnologia da Saúde de Lisboa (Instituto Politécnico de Lisboa)
dc.source.none.fl_str_mv Saúde e Tecnologia; No. 22 (2019): Novembro 2019; 13-21
Saúde & Tecnologia; N.º 22 (2019): Novembro 2019; 13-21
1646-9704
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1822183347762233344
dc.identifier.doi.none.fl_str_mv 10.25758/set.2213