Data mining approach for range prediction of electric vehicle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/19439 |
Resumo: | Our work proposal is based on the past driving data that are stored in a driver profile, and using real time information about the Electric Vehicle parameters (e.g. speed and energy stored in the batteries), combined with external parameters (e.g. condi-tions of roads, traffic, and weather), determine the range autonomy accurately, taking into account the historical driver behavior. The driver profile is based on the stored data, which acts as training set for a Data Mining approach, in order to estimate the Electric Vehicle range. The Data Mining approach uses a regression model aiming to find the better range autonomy, which is used to represent the current Electric Vehicle range autonomy on a map. |
id |
RCAP_dc8a7b00dd8123b9a1f92d9f93e36bb3 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/19439 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Data mining approach for range prediction of electric vehicleRange predictionData miningDriver profileRange anxiety problemElectric vehicleOur work proposal is based on the past driving data that are stored in a driver profile, and using real time information about the Electric Vehicle parameters (e.g. speed and energy stored in the batteries), combined with external parameters (e.g. condi-tions of roads, traffic, and weather), determine the range autonomy accurately, taking into account the historical driver behavior. The driver profile is based on the stored data, which acts as training set for a Data Mining approach, in order to estimate the Electric Vehicle range. The Data Mining approach uses a regression model aiming to find the better range autonomy, which is used to represent the current Electric Vehicle range autonomy on a map.Fundação para a Ciência e a Tecnologia (FCT)Universidade do MinhoFerreira, João C.Monteiro, Vítor Duarte FernandesAfonso, João L.2012-032012-03-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/19439enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T04:49:16Zoai:repositorium.sdum.uminho.pt:1822/19439Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T04:49:16Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Data mining approach for range prediction of electric vehicle |
title |
Data mining approach for range prediction of electric vehicle |
spellingShingle |
Data mining approach for range prediction of electric vehicle Ferreira, João C. Range prediction Data mining Driver profile Range anxiety problem Electric vehicle |
title_short |
Data mining approach for range prediction of electric vehicle |
title_full |
Data mining approach for range prediction of electric vehicle |
title_fullStr |
Data mining approach for range prediction of electric vehicle |
title_full_unstemmed |
Data mining approach for range prediction of electric vehicle |
title_sort |
Data mining approach for range prediction of electric vehicle |
author |
Ferreira, João C. |
author_facet |
Ferreira, João C. Monteiro, Vítor Duarte Fernandes Afonso, João L. |
author_role |
author |
author2 |
Monteiro, Vítor Duarte Fernandes Afonso, João L. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, João C. Monteiro, Vítor Duarte Fernandes Afonso, João L. |
dc.subject.por.fl_str_mv |
Range prediction Data mining Driver profile Range anxiety problem Electric vehicle |
topic |
Range prediction Data mining Driver profile Range anxiety problem Electric vehicle |
description |
Our work proposal is based on the past driving data that are stored in a driver profile, and using real time information about the Electric Vehicle parameters (e.g. speed and energy stored in the batteries), combined with external parameters (e.g. condi-tions of roads, traffic, and weather), determine the range autonomy accurately, taking into account the historical driver behavior. The driver profile is based on the stored data, which acts as training set for a Data Mining approach, in order to estimate the Electric Vehicle range. The Data Mining approach uses a regression model aiming to find the better range autonomy, which is used to represent the current Electric Vehicle range autonomy on a map. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 2012-03-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/19439 |
url |
http://hdl.handle.net/1822/19439 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544429352779776 |