Shifting capsule networks from the cloud to the deep edge

Detalhes bibliográficos
Autor(a) principal: Costa, Miguel Ângelo Peixoto
Data de Publicação: 2022
Outros Autores: Costa, Diogo André Veiga, Gomes, Tiago Manuel Ribeiro, Pinto, Sandro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/81556
Resumo: Capsule networks (CapsNets) are an emerging trend in image processing. In contrast to a convolutional neural network, CapsNets are not vulnerable to object deformation, as the relative spatial information of the objects is preserved across the network. However, their complexity is mainly related to the capsule structure and the dynamic routing mechanism, which makes it almost unreasonable to deploy a CapsNet, in its original form, in a resource-constrained device powered by a small microcontroller (MCU). In an era where intelligence is rapidly shifting from the cloud to the edge, this high complexity imposes serious challenges to the adoption of CapsNets at the very edge. To tackle this issue, we present an API for the execution of quantized CapsNets in Arm Cortex-M and RISC-V MCUs. Our software kernels extend the Arm CMSIS-NN and RISC-V PULP-NN to support capsule operations with 8-bit integers as operands. Along with it, we propose a framework to perform post-training quantization of a CapsNet. Results show a reduction in memory footprint of almost 75%, with accuracy loss ranging from 0.07% to 0.18%. In terms of throughput, our Arm Cortex-M API enables the execution of primary capsule and capsule layers with medium-sized kernels in just 119.94 and 90.60 milliseconds (ms), respectively (STM32H755ZIT6U, Cortex-M7 @ 480 MHz). For the GAP-8 SoC (RISC-V RV32IMCXpulp @ 170 MHz), the latency drops to 7.02 and 38.03 ms, respectively.
id RCAP_dca1a7ea0cfdb28d3eed0910189f9582
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/81556
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Shifting capsule networks from the cloud to the deep edgeCapsule networksCapsule network quantizationEdgeCloudCMSIS-NNPULP-NNEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaScience & TechnologyIndústria, inovação e infraestruturasCapsule networks (CapsNets) are an emerging trend in image processing. In contrast to a convolutional neural network, CapsNets are not vulnerable to object deformation, as the relative spatial information of the objects is preserved across the network. However, their complexity is mainly related to the capsule structure and the dynamic routing mechanism, which makes it almost unreasonable to deploy a CapsNet, in its original form, in a resource-constrained device powered by a small microcontroller (MCU). In an era where intelligence is rapidly shifting from the cloud to the edge, this high complexity imposes serious challenges to the adoption of CapsNets at the very edge. To tackle this issue, we present an API for the execution of quantized CapsNets in Arm Cortex-M and RISC-V MCUs. Our software kernels extend the Arm CMSIS-NN and RISC-V PULP-NN to support capsule operations with 8-bit integers as operands. Along with it, we propose a framework to perform post-training quantization of a CapsNet. Results show a reduction in memory footprint of almost 75%, with accuracy loss ranging from 0.07% to 0.18%. In terms of throughput, our Arm Cortex-M API enables the execution of primary capsule and capsule layers with medium-sized kernels in just 119.94 and 90.60 milliseconds (ms), respectively (STM32H755ZIT6U, Cortex-M7 @ 480 MHz). For the GAP-8 SoC (RISC-V RV32IMCXpulp @ 170 MHz), the latency drops to 7.02 and 38.03 ms, respectively.Miguel Costa is supported by FCT-Fundacao para a Ciencia e Tecnologia (grant SFRH/BD/146780/2019). This work has been also supported by FCT-Fundacao para a Ciencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.ACM PressUniversidade do MinhoCosta, Miguel Ângelo PeixotoCosta, Diogo André VeigaGomes, Tiago Manuel RibeiroPinto, Sandro2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttps://hdl.handle.net/1822/81556engMiguel Costa, Diogo Costa, Tiago Gomes, and Sandro Pinto. 2022. Shifting Capsule Networks from the Cloud to the Deep Edge. ACM Trans. Intell. Syst. Technol. 13, 6, Article 105 (December 2022), 25 pages. https://doi.org/10.1145/35445622157-69042157-691210.1145/3544562105https://dl.acm.org/doi/10.1145/3544562info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:35:37Zoai:repositorium.sdum.uminho.pt:1822/81556Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:31:30.144416Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Shifting capsule networks from the cloud to the deep edge
title Shifting capsule networks from the cloud to the deep edge
spellingShingle Shifting capsule networks from the cloud to the deep edge
Costa, Miguel Ângelo Peixoto
Capsule networks
Capsule network quantization
Edge
Cloud
CMSIS-NN
PULP-NN
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Science & Technology
Indústria, inovação e infraestruturas
title_short Shifting capsule networks from the cloud to the deep edge
title_full Shifting capsule networks from the cloud to the deep edge
title_fullStr Shifting capsule networks from the cloud to the deep edge
title_full_unstemmed Shifting capsule networks from the cloud to the deep edge
title_sort Shifting capsule networks from the cloud to the deep edge
author Costa, Miguel Ângelo Peixoto
author_facet Costa, Miguel Ângelo Peixoto
Costa, Diogo André Veiga
Gomes, Tiago Manuel Ribeiro
Pinto, Sandro
author_role author
author2 Costa, Diogo André Veiga
Gomes, Tiago Manuel Ribeiro
Pinto, Sandro
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Costa, Miguel Ângelo Peixoto
Costa, Diogo André Veiga
Gomes, Tiago Manuel Ribeiro
Pinto, Sandro
dc.subject.por.fl_str_mv Capsule networks
Capsule network quantization
Edge
Cloud
CMSIS-NN
PULP-NN
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Science & Technology
Indústria, inovação e infraestruturas
topic Capsule networks
Capsule network quantization
Edge
Cloud
CMSIS-NN
PULP-NN
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Science & Technology
Indústria, inovação e infraestruturas
description Capsule networks (CapsNets) are an emerging trend in image processing. In contrast to a convolutional neural network, CapsNets are not vulnerable to object deformation, as the relative spatial information of the objects is preserved across the network. However, their complexity is mainly related to the capsule structure and the dynamic routing mechanism, which makes it almost unreasonable to deploy a CapsNet, in its original form, in a resource-constrained device powered by a small microcontroller (MCU). In an era where intelligence is rapidly shifting from the cloud to the edge, this high complexity imposes serious challenges to the adoption of CapsNets at the very edge. To tackle this issue, we present an API for the execution of quantized CapsNets in Arm Cortex-M and RISC-V MCUs. Our software kernels extend the Arm CMSIS-NN and RISC-V PULP-NN to support capsule operations with 8-bit integers as operands. Along with it, we propose a framework to perform post-training quantization of a CapsNet. Results show a reduction in memory footprint of almost 75%, with accuracy loss ranging from 0.07% to 0.18%. In terms of throughput, our Arm Cortex-M API enables the execution of primary capsule and capsule layers with medium-sized kernels in just 119.94 and 90.60 milliseconds (ms), respectively (STM32H755ZIT6U, Cortex-M7 @ 480 MHz). For the GAP-8 SoC (RISC-V RV32IMCXpulp @ 170 MHz), the latency drops to 7.02 and 38.03 ms, respectively.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
2022-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/81556
url https://hdl.handle.net/1822/81556
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Miguel Costa, Diogo Costa, Tiago Gomes, and Sandro Pinto. 2022. Shifting Capsule Networks from the Cloud to the Deep Edge. ACM Trans. Intell. Syst. Technol. 13, 6, Article 105 (December 2022), 25 pages. https://doi.org/10.1145/3544562
2157-6904
2157-6912
10.1145/3544562
105
https://dl.acm.org/doi/10.1145/3544562
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv ACM Press
publisher.none.fl_str_mv ACM Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132824096210944