A Data-mining-based Methodology to support MV Electricity Customers' Characterization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/5936 |
Resumo: | This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed. |
id |
RCAP_dca9553625030153a121110bdc3a3db9 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/5936 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Data-mining-based Methodology to support MV Electricity Customers' CharacterizationLoad profilingData MiningClusteringClassificationClustering ValidityThis paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.ElsevierRepositório Científico do Instituto Politécnico do PortoRamos, SérgioDuarte, JoãoDuarte, F. JorgeVale, Zita2015-05-06T08:45:51Z2015-032015-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/5936eng10.1016/j.enbuild.2015.01.035info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:46:06Zoai:recipp.ipp.pt:10400.22/5936Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:26:33.497249Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Data-mining-based Methodology to support MV Electricity Customers' Characterization |
title |
A Data-mining-based Methodology to support MV Electricity Customers' Characterization |
spellingShingle |
A Data-mining-based Methodology to support MV Electricity Customers' Characterization Ramos, Sérgio Load profiling Data Mining Clustering Classification Clustering Validity |
title_short |
A Data-mining-based Methodology to support MV Electricity Customers' Characterization |
title_full |
A Data-mining-based Methodology to support MV Electricity Customers' Characterization |
title_fullStr |
A Data-mining-based Methodology to support MV Electricity Customers' Characterization |
title_full_unstemmed |
A Data-mining-based Methodology to support MV Electricity Customers' Characterization |
title_sort |
A Data-mining-based Methodology to support MV Electricity Customers' Characterization |
author |
Ramos, Sérgio |
author_facet |
Ramos, Sérgio Duarte, João Duarte, F. Jorge Vale, Zita |
author_role |
author |
author2 |
Duarte, João Duarte, F. Jorge Vale, Zita |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Ramos, Sérgio Duarte, João Duarte, F. Jorge Vale, Zita |
dc.subject.por.fl_str_mv |
Load profiling Data Mining Clustering Classification Clustering Validity |
topic |
Load profiling Data Mining Clustering Classification Clustering Validity |
description |
This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05-06T08:45:51Z 2015-03 2015-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/5936 |
url |
http://hdl.handle.net/10400.22/5936 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.enbuild.2015.01.035 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131360337592320 |