A Data-mining-based Methodology to support MV Electricity Customers' Characterization

Detalhes bibliográficos
Autor(a) principal: Ramos, Sérgio
Data de Publicação: 2015
Outros Autores: Duarte, João, Duarte, F. Jorge, Vale, Zita
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/5936
Resumo: This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.
id RCAP_dca9553625030153a121110bdc3a3db9
oai_identifier_str oai:recipp.ipp.pt:10400.22/5936
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A Data-mining-based Methodology to support MV Electricity Customers' CharacterizationLoad profilingData MiningClusteringClassificationClustering ValidityThis paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.ElsevierRepositório Científico do Instituto Politécnico do PortoRamos, SérgioDuarte, JoãoDuarte, F. JorgeVale, Zita2015-05-06T08:45:51Z2015-032015-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/5936eng10.1016/j.enbuild.2015.01.035info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:46:06Zoai:recipp.ipp.pt:10400.22/5936Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:26:33.497249Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A Data-mining-based Methodology to support MV Electricity Customers' Characterization
title A Data-mining-based Methodology to support MV Electricity Customers' Characterization
spellingShingle A Data-mining-based Methodology to support MV Electricity Customers' Characterization
Ramos, Sérgio
Load profiling
Data Mining
Clustering
Classification
Clustering Validity
title_short A Data-mining-based Methodology to support MV Electricity Customers' Characterization
title_full A Data-mining-based Methodology to support MV Electricity Customers' Characterization
title_fullStr A Data-mining-based Methodology to support MV Electricity Customers' Characterization
title_full_unstemmed A Data-mining-based Methodology to support MV Electricity Customers' Characterization
title_sort A Data-mining-based Methodology to support MV Electricity Customers' Characterization
author Ramos, Sérgio
author_facet Ramos, Sérgio
Duarte, João
Duarte, F. Jorge
Vale, Zita
author_role author
author2 Duarte, João
Duarte, F. Jorge
Vale, Zita
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Ramos, Sérgio
Duarte, João
Duarte, F. Jorge
Vale, Zita
dc.subject.por.fl_str_mv Load profiling
Data Mining
Clustering
Classification
Clustering Validity
topic Load profiling
Data Mining
Clustering
Classification
Clustering Validity
description This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.
publishDate 2015
dc.date.none.fl_str_mv 2015-05-06T08:45:51Z
2015-03
2015-03-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/5936
url http://hdl.handle.net/10400.22/5936
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.enbuild.2015.01.035
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131360337592320