The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs

Detalhes bibliográficos
Autor(a) principal: Liu Zhongyun
Data de Publicação: 2010
Outros Autores: Chen, Lu, Zhang Yulin
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/11353
Resumo: In this paper we concern the reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs. Based on the fact that every centrohermitian matrix can be re- duced to a real matrix by a simple similarity transformation, we rst consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related reconstruction problem. We show that the di- mension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, and the solution of the reconstruction problem of an hermitian Toeplitz matrix with two given eigenpairs is unique.
id RCAP_dd280c6b8fb87c779daaf7fe21808ba2
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/11353
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairsCentrohermitian matrixInverse eigenproblemsHermitian Toeplitz matrixReconstructionIn this paper we concern the reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs. Based on the fact that every centrohermitian matrix can be re- duced to a real matrix by a simple similarity transformation, we rst consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related reconstruction problem. We show that the di- mension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, and the solution of the reconstruction problem of an hermitian Toeplitz matrix with two given eigenpairs is unique.Fundação para a Ciência e a Tecnologia (FCT) - Research Programme POCTINational Natural Science Foundation of China - nº 10771022, 10571012Scienti c Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry of China - nº 890 (2008)Major Foundation of Educational Committee of Hunan Province - nº 09A002 (2009)SpringerUniversidade do MinhoLiu ZhongyunChen, LuZhang Yulin20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11353eng"Journal of Systems Science and Complexity." ISSN 1009-6124. 23:5 (Out. 2010) 961-970.1009-6124www.springerlink.cominfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:09:48Zoai:repositorium.sdum.uminho.pt:1822/11353Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:01:19.366747Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs
title The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs
spellingShingle The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs
Liu Zhongyun
Centrohermitian matrix
Inverse eigenproblems
Hermitian Toeplitz matrix
Reconstruction
title_short The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs
title_full The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs
title_fullStr The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs
title_full_unstemmed The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs
title_sort The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs
author Liu Zhongyun
author_facet Liu Zhongyun
Chen, Lu
Zhang Yulin
author_role author
author2 Chen, Lu
Zhang Yulin
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Liu Zhongyun
Chen, Lu
Zhang Yulin
dc.subject.por.fl_str_mv Centrohermitian matrix
Inverse eigenproblems
Hermitian Toeplitz matrix
Reconstruction
topic Centrohermitian matrix
Inverse eigenproblems
Hermitian Toeplitz matrix
Reconstruction
description In this paper we concern the reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs. Based on the fact that every centrohermitian matrix can be re- duced to a real matrix by a simple similarity transformation, we rst consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related reconstruction problem. We show that the di- mension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, and the solution of the reconstruction problem of an hermitian Toeplitz matrix with two given eigenpairs is unique.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/11353
url http://hdl.handle.net/1822/11353
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Journal of Systems Science and Complexity." ISSN 1009-6124. 23:5 (Out. 2010) 961-970.
1009-6124
www.springerlink.com
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132411920908288