The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/11353 |
Resumo: | In this paper we concern the reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs. Based on the fact that every centrohermitian matrix can be re- duced to a real matrix by a simple similarity transformation, we rst consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related reconstruction problem. We show that the di- mension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, and the solution of the reconstruction problem of an hermitian Toeplitz matrix with two given eigenpairs is unique. |
id |
RCAP_dd280c6b8fb87c779daaf7fe21808ba2 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/11353 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairsCentrohermitian matrixInverse eigenproblemsHermitian Toeplitz matrixReconstructionIn this paper we concern the reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs. Based on the fact that every centrohermitian matrix can be re- duced to a real matrix by a simple similarity transformation, we rst consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related reconstruction problem. We show that the di- mension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, and the solution of the reconstruction problem of an hermitian Toeplitz matrix with two given eigenpairs is unique.Fundação para a Ciência e a Tecnologia (FCT) - Research Programme POCTINational Natural Science Foundation of China - nº 10771022, 10571012Scienti c Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry of China - nº 890 (2008)Major Foundation of Educational Committee of Hunan Province - nº 09A002 (2009)SpringerUniversidade do MinhoLiu ZhongyunChen, LuZhang Yulin20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11353eng"Journal of Systems Science and Complexity." ISSN 1009-6124. 23:5 (Out. 2010) 961-970.1009-6124www.springerlink.cominfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:09:48Zoai:repositorium.sdum.uminho.pt:1822/11353Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:01:19.366747Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs |
title |
The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs |
spellingShingle |
The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs Liu Zhongyun Centrohermitian matrix Inverse eigenproblems Hermitian Toeplitz matrix Reconstruction |
title_short |
The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs |
title_full |
The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs |
title_fullStr |
The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs |
title_full_unstemmed |
The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs |
title_sort |
The reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs |
author |
Liu Zhongyun |
author_facet |
Liu Zhongyun Chen, Lu Zhang Yulin |
author_role |
author |
author2 |
Chen, Lu Zhang Yulin |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Liu Zhongyun Chen, Lu Zhang Yulin |
dc.subject.por.fl_str_mv |
Centrohermitian matrix Inverse eigenproblems Hermitian Toeplitz matrix Reconstruction |
topic |
Centrohermitian matrix Inverse eigenproblems Hermitian Toeplitz matrix Reconstruction |
description |
In this paper we concern the reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs. Based on the fact that every centrohermitian matrix can be re- duced to a real matrix by a simple similarity transformation, we rst consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related reconstruction problem. We show that the di- mension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, and the solution of the reconstruction problem of an hermitian Toeplitz matrix with two given eigenpairs is unique. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/11353 |
url |
http://hdl.handle.net/1822/11353 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Journal of Systems Science and Complexity." ISSN 1009-6124. 23:5 (Out. 2010) 961-970. 1009-6124 www.springerlink.com |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132411920908288 |