Analysis and NN-based control of doubly fed induction generator in wind power generation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10198/7488 |
Resumo: | With the increasing size of wind power generation it is required to perform power system stability analysis that uses dynamic wind generator models. In this paper are presented all the wind power system components, including the turbine, the generator, the power electronic converter and controllers. The aim is to study the Doubly Fed Induction Generator (DFIG) operation and its connection to the power system, either during normal operation or during transient grid fault events. Two different control system design technologies are present, the first is performed by standard PI controllers and the second is based on artificial neural networks |
id |
RCAP_dd4fe89b0fa8d28496e4b0f5a570798e |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/7488 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysis and NN-based control of doubly fed induction generator in wind power generationWind power generation,SimulationControlNeural networksDoubly fed induction generatorWith the increasing size of wind power generation it is required to perform power system stability analysis that uses dynamic wind generator models. In this paper are presented all the wind power system components, including the turbine, the generator, the power electronic converter and controllers. The aim is to study the Doubly Fed Induction Generator (DFIG) operation and its connection to the power system, either during normal operation or during transient grid fault events. Two different control system design technologies are present, the first is performed by standard PI controllers and the second is based on artificial neural networksRenewable Energy & Power Quality JournalBiblioteca Digital do IPBSoares, OrlandoGonçalves, HenriqueMartins, António A.Carvalho, Adriano2012-09-10T12:28:53Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/7488engSoares, Orlando; Gonçalves, Henrique; Martins, António; Carvalho, Adriano (2009). Analysis and NN-based control of doubly fed induction generator in wind power generation. Renewable Energy & Power Quality Journal. ISSN 2172-038X. 7.2172-038Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:18:29Zoai:bibliotecadigital.ipb.pt:10198/7488Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:59:15.754218Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysis and NN-based control of doubly fed induction generator in wind power generation |
title |
Analysis and NN-based control of doubly fed induction generator in wind power generation |
spellingShingle |
Analysis and NN-based control of doubly fed induction generator in wind power generation Soares, Orlando Wind power generation, Simulation Control Neural networks Doubly fed induction generator |
title_short |
Analysis and NN-based control of doubly fed induction generator in wind power generation |
title_full |
Analysis and NN-based control of doubly fed induction generator in wind power generation |
title_fullStr |
Analysis and NN-based control of doubly fed induction generator in wind power generation |
title_full_unstemmed |
Analysis and NN-based control of doubly fed induction generator in wind power generation |
title_sort |
Analysis and NN-based control of doubly fed induction generator in wind power generation |
author |
Soares, Orlando |
author_facet |
Soares, Orlando Gonçalves, Henrique Martins, António A. Carvalho, Adriano |
author_role |
author |
author2 |
Gonçalves, Henrique Martins, António A. Carvalho, Adriano |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Soares, Orlando Gonçalves, Henrique Martins, António A. Carvalho, Adriano |
dc.subject.por.fl_str_mv |
Wind power generation, Simulation Control Neural networks Doubly fed induction generator |
topic |
Wind power generation, Simulation Control Neural networks Doubly fed induction generator |
description |
With the increasing size of wind power generation it is required to perform power system stability analysis that uses dynamic wind generator models. In this paper are presented all the wind power system components, including the turbine, the generator, the power electronic converter and controllers. The aim is to study the Doubly Fed Induction Generator (DFIG) operation and its connection to the power system, either during normal operation or during transient grid fault events. Two different control system design technologies are present, the first is performed by standard PI controllers and the second is based on artificial neural networks |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z 2012-09-10T12:28:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/7488 |
url |
http://hdl.handle.net/10198/7488 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Soares, Orlando; Gonçalves, Henrique; Martins, António; Carvalho, Adriano (2009). Analysis and NN-based control of doubly fed induction generator in wind power generation. Renewable Energy & Power Quality Journal. ISSN 2172-038X. 7. 2172-038X |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Renewable Energy & Power Quality Journal |
publisher.none.fl_str_mv |
Renewable Energy & Power Quality Journal |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135215558328320 |