Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease

Detalhes bibliográficos
Autor(a) principal: Bouça-Machado, Raquel
Data de Publicação: 2021
Outros Autores: Pona-Ferreira, Filipa, Leitão, Mariana, Clemente, Ana, Vila-Viçosa, Diogo, Azevedo Kauppila, Linda, Costa, Rui M., Matias, Ricardo, Ferreira, Joaquim J
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/50061
Resumo: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
id RCAP_de017f9ad6d03a00c15210099f6f3026
oai_identifier_str oai:repositorio.ul.pt:10451/50061
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s diseaseParkinson’s diseaseDigital healthRemote monitoringSensorsWearable technology© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Mobile health (mHealth) has emerged as a potential solution to providing valuable ecological information about the severity and burden of Parkinson's disease (PD) symptoms in real-life conditions. Objective: The objective of our study was to explore the feasibility and usability of an mHealth system for continuous and objective real-life measures of patients' health and functional mobility, in unsupervised settings. Methods: Patients with a clinical diagnosis of PD, who were able to walk unassisted, and had an Android smartphone were included. Patients were asked to answer a daily survey, to perform three weekly active tests, and to perform a monthly in-person clinical assessment. Feasibility and usability were explored as primary and secondary outcomes. An exploratory analysis was performed to investigate the correlation between data from the mKinetikos app and clinical assessments. Results: Seventeen participants (85%) completed the study. Sixteen participants (94.1%) showed a medium-to-high level of compliance with the mKinetikos system. A 6-point drop in the total score of the Post-Study System Usability Questionnaire was observed. Conclusions: Our results support the feasibility of the mKinetikos system for continuous and objective real-life measures of a patient's health and functional mobility. The observed correlations of mKinetikos metrics with clinical data seem to suggest that this mHealth solution is a promising tool to support clinical decisions.MDPIRepositório da Universidade de LisboaBouça-Machado, RaquelPona-Ferreira, FilipaLeitão, MarianaClemente, AnaVila-Viçosa, DiogoAzevedo Kauppila, LindaCosta, Rui M.Matias, RicardoFerreira, Joaquim J2021-10-29T14:32:08Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/50061engSensors (Basel). 2021 Jul 21;21(15):497210.3390/s211549721424-8220info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-20T18:10:00Zoai:repositorio.ul.pt:10451/50061Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-20T18:10Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease
title Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease
spellingShingle Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease
Bouça-Machado, Raquel
Parkinson’s disease
Digital health
Remote monitoring
Sensors
Wearable technology
title_short Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease
title_full Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease
title_fullStr Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease
title_full_unstemmed Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease
title_sort Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease
author Bouça-Machado, Raquel
author_facet Bouça-Machado, Raquel
Pona-Ferreira, Filipa
Leitão, Mariana
Clemente, Ana
Vila-Viçosa, Diogo
Azevedo Kauppila, Linda
Costa, Rui M.
Matias, Ricardo
Ferreira, Joaquim J
author_role author
author2 Pona-Ferreira, Filipa
Leitão, Mariana
Clemente, Ana
Vila-Viçosa, Diogo
Azevedo Kauppila, Linda
Costa, Rui M.
Matias, Ricardo
Ferreira, Joaquim J
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Bouça-Machado, Raquel
Pona-Ferreira, Filipa
Leitão, Mariana
Clemente, Ana
Vila-Viçosa, Diogo
Azevedo Kauppila, Linda
Costa, Rui M.
Matias, Ricardo
Ferreira, Joaquim J
dc.subject.por.fl_str_mv Parkinson’s disease
Digital health
Remote monitoring
Sensors
Wearable technology
topic Parkinson’s disease
Digital health
Remote monitoring
Sensors
Wearable technology
description © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
publishDate 2021
dc.date.none.fl_str_mv 2021-10-29T14:32:08Z
2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/50061
url http://hdl.handle.net/10451/50061
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sensors (Basel). 2021 Jul 21;21(15):4972
10.3390/s21154972
1424-8220
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817549158652837888