Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/50061 |
Resumo: | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
id |
RCAP_de017f9ad6d03a00c15210099f6f3026 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/50061 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s diseaseParkinson’s diseaseDigital healthRemote monitoringSensorsWearable technology© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Mobile health (mHealth) has emerged as a potential solution to providing valuable ecological information about the severity and burden of Parkinson's disease (PD) symptoms in real-life conditions. Objective: The objective of our study was to explore the feasibility and usability of an mHealth system for continuous and objective real-life measures of patients' health and functional mobility, in unsupervised settings. Methods: Patients with a clinical diagnosis of PD, who were able to walk unassisted, and had an Android smartphone were included. Patients were asked to answer a daily survey, to perform three weekly active tests, and to perform a monthly in-person clinical assessment. Feasibility and usability were explored as primary and secondary outcomes. An exploratory analysis was performed to investigate the correlation between data from the mKinetikos app and clinical assessments. Results: Seventeen participants (85%) completed the study. Sixteen participants (94.1%) showed a medium-to-high level of compliance with the mKinetikos system. A 6-point drop in the total score of the Post-Study System Usability Questionnaire was observed. Conclusions: Our results support the feasibility of the mKinetikos system for continuous and objective real-life measures of a patient's health and functional mobility. The observed correlations of mKinetikos metrics with clinical data seem to suggest that this mHealth solution is a promising tool to support clinical decisions.MDPIRepositório da Universidade de LisboaBouça-Machado, RaquelPona-Ferreira, FilipaLeitão, MarianaClemente, AnaVila-Viçosa, DiogoAzevedo Kauppila, LindaCosta, Rui M.Matias, RicardoFerreira, Joaquim J2021-10-29T14:32:08Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/50061engSensors (Basel). 2021 Jul 21;21(15):497210.3390/s211549721424-8220info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-20T18:10:00Zoai:repositorio.ul.pt:10451/50061Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-20T18:10Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease |
title |
Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease |
spellingShingle |
Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease Bouça-Machado, Raquel Parkinson’s disease Digital health Remote monitoring Sensors Wearable technology |
title_short |
Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease |
title_full |
Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease |
title_fullStr |
Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease |
title_full_unstemmed |
Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease |
title_sort |
Feasibility of a mobile-based system for unsupervised monitoring in Parkinson’s disease |
author |
Bouça-Machado, Raquel |
author_facet |
Bouça-Machado, Raquel Pona-Ferreira, Filipa Leitão, Mariana Clemente, Ana Vila-Viçosa, Diogo Azevedo Kauppila, Linda Costa, Rui M. Matias, Ricardo Ferreira, Joaquim J |
author_role |
author |
author2 |
Pona-Ferreira, Filipa Leitão, Mariana Clemente, Ana Vila-Viçosa, Diogo Azevedo Kauppila, Linda Costa, Rui M. Matias, Ricardo Ferreira, Joaquim J |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Bouça-Machado, Raquel Pona-Ferreira, Filipa Leitão, Mariana Clemente, Ana Vila-Viçosa, Diogo Azevedo Kauppila, Linda Costa, Rui M. Matias, Ricardo Ferreira, Joaquim J |
dc.subject.por.fl_str_mv |
Parkinson’s disease Digital health Remote monitoring Sensors Wearable technology |
topic |
Parkinson’s disease Digital health Remote monitoring Sensors Wearable technology |
description |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-29T14:32:08Z 2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/50061 |
url |
http://hdl.handle.net/10451/50061 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sensors (Basel). 2021 Jul 21;21(15):4972 10.3390/s21154972 1424-8220 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817549158652837888 |