Time-Adaptive Quantile-Copula for Wind Power Probabilistic Forecasting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/2162 |
Resumo: | This paper presents a novel time-adaptive quantile-copula estimator for kernel density forecast and a discussion of how to select the adequate kernels for modeling the different variables of the problem. Results are presented for different case-studies and compared with splines quantile regression (QR). The datasets used are from NREL's Eastern Wind Integration and Transmission Study, and from a real wind farm located in the Midwest region of the United States. . The new probabilistic forecasting model is elegant and simple and yet displays advantages over the traditional QR approach. Especially notable is the quality of the results achieved with the time-adaptive version, namely when evaluated in terms of forecast calibration, which is a characteristic that is advantageous for both system operators and wind power producers. |
id |
RCAP_de9ae0634fa9b1e91204dde4ae34da2a |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/2162 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Time-Adaptive Quantile-Copula for Wind Power Probabilistic ForecastingThis paper presents a novel time-adaptive quantile-copula estimator for kernel density forecast and a discussion of how to select the adequate kernels for modeling the different variables of the problem. Results are presented for different case-studies and compared with splines quantile regression (QR). The datasets used are from NREL's Eastern Wind Integration and Transmission Study, and from a real wind farm located in the Midwest region of the United States. . The new probabilistic forecasting model is elegant and simple and yet displays advantages over the traditional QR approach. Especially notable is the quality of the results achieved with the time-adaptive version, namely when evaluated in terms of forecast calibration, which is a characteristic that is advantageous for both system operators and wind power producers.2017-11-16T13:17:38Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/2162engJianhui WangVladimiro MirandaAudun BotterudZhi ZhouRicardo Jorge Bessainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:09Zoai:repositorio.inesctec.pt:123456789/2162Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:45.172695Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Time-Adaptive Quantile-Copula for Wind Power Probabilistic Forecasting |
title |
Time-Adaptive Quantile-Copula for Wind Power Probabilistic Forecasting |
spellingShingle |
Time-Adaptive Quantile-Copula for Wind Power Probabilistic Forecasting Jianhui Wang |
title_short |
Time-Adaptive Quantile-Copula for Wind Power Probabilistic Forecasting |
title_full |
Time-Adaptive Quantile-Copula for Wind Power Probabilistic Forecasting |
title_fullStr |
Time-Adaptive Quantile-Copula for Wind Power Probabilistic Forecasting |
title_full_unstemmed |
Time-Adaptive Quantile-Copula for Wind Power Probabilistic Forecasting |
title_sort |
Time-Adaptive Quantile-Copula for Wind Power Probabilistic Forecasting |
author |
Jianhui Wang |
author_facet |
Jianhui Wang Vladimiro Miranda Audun Botterud Zhi Zhou Ricardo Jorge Bessa |
author_role |
author |
author2 |
Vladimiro Miranda Audun Botterud Zhi Zhou Ricardo Jorge Bessa |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Jianhui Wang Vladimiro Miranda Audun Botterud Zhi Zhou Ricardo Jorge Bessa |
description |
This paper presents a novel time-adaptive quantile-copula estimator for kernel density forecast and a discussion of how to select the adequate kernels for modeling the different variables of the problem. Results are presented for different case-studies and compared with splines quantile regression (QR). The datasets used are from NREL's Eastern Wind Integration and Transmission Study, and from a real wind farm located in the Midwest region of the United States. . The new probabilistic forecasting model is elegant and simple and yet displays advantages over the traditional QR approach. Especially notable is the quality of the results achieved with the time-adaptive version, namely when evaluated in terms of forecast calibration, which is a characteristic that is advantageous for both system operators and wind power producers. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01-01T00:00:00Z 2012 2017-11-16T13:17:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/2162 |
url |
http://repositorio.inesctec.pt/handle/123456789/2162 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131603339837440 |