Forecasting tourism demand for Lisbon´s region : a data mining approach

Detalhes bibliográficos
Autor(a) principal: Ricardo, Hugo David dos Reis Barbosa
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/31971
Resumo: Project Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Information Analysis and Management
id RCAP_dec2f37466406f5dd1f7d873d1d2b072
oai_identifier_str oai:run.unl.pt:10362/31971
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Forecasting tourism demand for Lisbon´s region : a data mining approachForecastTourism demandData miningModelLisbonProject Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Information Analysis and ManagementPortugal is conscious that the economic growth and development of its regions can be attained by investing in everything that boosts international tourism activity. The Government Program and the National’s Strategic Plan for Tourism shows that, besides the government, other tourism stakeholders such as passenger transport companies, accommodation establishments, restaurants, recreational businesses, among others, rely on tourism demand indicator’s forecasts to make decisions. Most of tourism demand forecasting models are time-series and econometric based. A real-world system like tourism industry is dynamic, thus not linear. Machine Learning methods have proven to be quite suitable for non-linear modelling. These methods are part of an interdisciplinary field named “Data Mining” which is known by the process of knowledge discovery in databases (KDD). The core drive of this project work is to enhance the available public sources of tourism forecast information and contribute to the tourism stakeholder’s strategy in Portugal. More specifically, to develop a multivariate model to forecast international tourism demand through a Data Mining approach. The model development was constrained to publicly available data and machine learning methods. The forecasted demand variable was the nights spent at tourist accommodation establishments in Lisbon’s region, one of the country’s main foreign tourist destinations. Instead of revealing a best forecasting method or model, as most of previous research sought to, the current project aimed at building the most accurate multivariate forecasting model, based on a database with minimum data assumptions. The objectives were achieved, as the selected model (SMOReg) was successful in generalization capability. The accuracy of the produced forecasts provides some evidence of the reliability of the proposed forecasting model. If institutions and decision makers have information regarding the evolution of the explanatory variables used in this model, the impact on Lisbon’s tourism demand can be assessed, even in case of an emerging recession.Gonçalves, Ivo Carlos PereiraCosta, Ana Cristina Marinho daRUNRicardo, Hugo David dos Reis Barbosa2018-03-07T19:35:47Z2018-02-202018-02-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/31971TID:201869780enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:17:46Zoai:run.unl.pt:10362/31971Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:29:46.927068Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Forecasting tourism demand for Lisbon´s region : a data mining approach
title Forecasting tourism demand for Lisbon´s region : a data mining approach
spellingShingle Forecasting tourism demand for Lisbon´s region : a data mining approach
Ricardo, Hugo David dos Reis Barbosa
Forecast
Tourism demand
Data mining
Model
Lisbon
title_short Forecasting tourism demand for Lisbon´s region : a data mining approach
title_full Forecasting tourism demand for Lisbon´s region : a data mining approach
title_fullStr Forecasting tourism demand for Lisbon´s region : a data mining approach
title_full_unstemmed Forecasting tourism demand for Lisbon´s region : a data mining approach
title_sort Forecasting tourism demand for Lisbon´s region : a data mining approach
author Ricardo, Hugo David dos Reis Barbosa
author_facet Ricardo, Hugo David dos Reis Barbosa
author_role author
dc.contributor.none.fl_str_mv Gonçalves, Ivo Carlos Pereira
Costa, Ana Cristina Marinho da
RUN
dc.contributor.author.fl_str_mv Ricardo, Hugo David dos Reis Barbosa
dc.subject.por.fl_str_mv Forecast
Tourism demand
Data mining
Model
Lisbon
topic Forecast
Tourism demand
Data mining
Model
Lisbon
description Project Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Information Analysis and Management
publishDate 2018
dc.date.none.fl_str_mv 2018-03-07T19:35:47Z
2018-02-20
2018-02-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/31971
TID:201869780
url http://hdl.handle.net/10362/31971
identifier_str_mv TID:201869780
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137922669084672