Random sample sizes in orthogonal mixed models with stability
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/9136 |
Resumo: | In this work, we presente a new approach that considers orthogonal mixed models, under situations of stability, when the sample dimensions are not known in advande. In this case, samples are considered realizations of independente rendom variables. We apply this methodology to the case where there is na upper bound for the sample dimensions, which may not be attained since failures may occur. Based on this, we assume that sample sizes are binomially distributed. We consider na application on the incidence of unemployed persons in the European Union to illustrate the proposed methodology. A simulation study is also conduced. The obtained results show the relevance of the proposed approach in avoiding false rejections. |
id |
RCAP_decbfd07a4bb507853b0f724e6b0de5a |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/9136 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Random sample sizes in orthogonal mixed models with stabilityBinomial distributionOrthogonal mixed modelsRandom sample sizesStability situationsUnemployment in European UnionIn this work, we presente a new approach that considers orthogonal mixed models, under situations of stability, when the sample dimensions are not known in advande. In this case, samples are considered realizations of independente rendom variables. We apply this methodology to the case where there is na upper bound for the sample dimensions, which may not be attained since failures may occur. Based on this, we assume that sample sizes are binomially distributed. We consider na application on the incidence of unemployed persons in the European Union to illustrate the proposed methodology. A simulation study is also conduced. The obtained results show the relevance of the proposed approach in avoiding false rejections.uBibliorumNunes, CéliaMário, Anacleto César XavierFerreira, DárioFerreira, Sandra S.Mexia, João T.2020-02-07T15:20:51Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9136eng10.1002/cmm4.1050metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:44Zoai:ubibliorum.ubi.pt:10400.6/9136Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:19.158104Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Random sample sizes in orthogonal mixed models with stability |
title |
Random sample sizes in orthogonal mixed models with stability |
spellingShingle |
Random sample sizes in orthogonal mixed models with stability Nunes, Célia Binomial distribution Orthogonal mixed models Random sample sizes Stability situations Unemployment in European Union |
title_short |
Random sample sizes in orthogonal mixed models with stability |
title_full |
Random sample sizes in orthogonal mixed models with stability |
title_fullStr |
Random sample sizes in orthogonal mixed models with stability |
title_full_unstemmed |
Random sample sizes in orthogonal mixed models with stability |
title_sort |
Random sample sizes in orthogonal mixed models with stability |
author |
Nunes, Célia |
author_facet |
Nunes, Célia Mário, Anacleto César Xavier Ferreira, Dário Ferreira, Sandra S. Mexia, João T. |
author_role |
author |
author2 |
Mário, Anacleto César Xavier Ferreira, Dário Ferreira, Sandra S. Mexia, João T. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Nunes, Célia Mário, Anacleto César Xavier Ferreira, Dário Ferreira, Sandra S. Mexia, João T. |
dc.subject.por.fl_str_mv |
Binomial distribution Orthogonal mixed models Random sample sizes Stability situations Unemployment in European Union |
topic |
Binomial distribution Orthogonal mixed models Random sample sizes Stability situations Unemployment in European Union |
description |
In this work, we presente a new approach that considers orthogonal mixed models, under situations of stability, when the sample dimensions are not known in advande. In this case, samples are considered realizations of independente rendom variables. We apply this methodology to the case where there is na upper bound for the sample dimensions, which may not be attained since failures may occur. Based on this, we assume that sample sizes are binomially distributed. We consider na application on the incidence of unemployed persons in the European Union to illustrate the proposed methodology. A simulation study is also conduced. The obtained results show the relevance of the proposed approach in avoiding false rejections. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z 2020-02-07T15:20:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/9136 |
url |
http://hdl.handle.net/10400.6/9136 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1002/cmm4.1050 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136385828913152 |