Trace semantics via determinization

Detalhes bibliográficos
Autor(a) principal: Jacobs, Bart
Data de Publicação: 2015
Outros Autores: Silva, Alexandra, Sokolova, Ana
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/37870
Resumo: This paper takes a fresh look at the topic of trace semantics in the theory of coalgebras. The first development of coalgebraic trace semantics used final coalgebras in Kleisli categories, stemming from an initial algebra in the underlying category (see notably~\cite{HasuoJS07}). This approach requires some non-trivial assumptions, like dcpo enrichment, which do not always hold, even in cases where one can reasonably speak of traces (like for weighted automata). More recently, it has been noticed (see~\cite{SBBR10}) that trace semantics can also arise by first performing a determinization construction. In this paper, we develop a systematic approach, in which the two approaches correspond to different orders of composing a functor and a monad, and accordingly, to different distributive laws. The relevant final coalgebra that gives rise to trace semantics does not live in a Kleisli category, but more generally, in a category of Eilenberg-Moore algebras. In order to exploit its finality, we identify an extension operation, that changes the state space of a coalgebra into a free algebra, which abstractly captures determinization of automata. Notably, we show that the two different views on trace semantics are equivalent, in the examples where both approaches are applicable.
id RCAP_df32bdfa88736b531b2ea9de8567ebb9
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/37870
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Trace semantics via determinizationCoalgebraKleisli categoryEilenberg-Moore categoryTrace semanticsScience & TechnologyThis paper takes a fresh look at the topic of trace semantics in the theory of coalgebras. The first development of coalgebraic trace semantics used final coalgebras in Kleisli categories, stemming from an initial algebra in the underlying category (see notably~\cite{HasuoJS07}). This approach requires some non-trivial assumptions, like dcpo enrichment, which do not always hold, even in cases where one can reasonably speak of traces (like for weighted automata). More recently, it has been noticed (see~\cite{SBBR10}) that trace semantics can also arise by first performing a determinization construction. In this paper, we develop a systematic approach, in which the two approaches correspond to different orders of composing a functor and a monad, and accordingly, to different distributive laws. The relevant final coalgebra that gives rise to trace semantics does not live in a Kleisli category, but more generally, in a category of Eilenberg-Moore algebras. In order to exploit its finality, we identify an extension operation, that changes the state space of a coalgebra into a free algebra, which abstractly captures determinization of automata. Notably, we show that the two different views on trace semantics are equivalent, in the examples where both approaches are applicable.We are grateful to the anonymous referees for valuable comments. The work of Alexandra Silva is partially funded by the ERDF through the Programme COMPETE and by the Portuguese Foundation for Science and Technology, project Ref. FCOMP-01-0124-FEDER-020537 and SFRH/BPD/71956/2010.Academic PressSpringerUniversidade do MinhoJacobs, BartSilva, AlexandraSokolova, Ana20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/37870engJacobs, B., Silva, A., & Sokolova, A. (2015). Trace semantics via determinization. Journal of Computer and System Sciences, 81(5), 859-879. doi: 10.1016/j.jcss.2014.12.0050022-000010.1016/j.jcss.2014.12.005info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:54:01Zoai:repositorium.sdum.uminho.pt:1822/37870Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:53:32.024314Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Trace semantics via determinization
title Trace semantics via determinization
spellingShingle Trace semantics via determinization
Jacobs, Bart
Coalgebra
Kleisli category
Eilenberg-Moore category
Trace semantics
Science & Technology
title_short Trace semantics via determinization
title_full Trace semantics via determinization
title_fullStr Trace semantics via determinization
title_full_unstemmed Trace semantics via determinization
title_sort Trace semantics via determinization
author Jacobs, Bart
author_facet Jacobs, Bart
Silva, Alexandra
Sokolova, Ana
author_role author
author2 Silva, Alexandra
Sokolova, Ana
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Jacobs, Bart
Silva, Alexandra
Sokolova, Ana
dc.subject.por.fl_str_mv Coalgebra
Kleisli category
Eilenberg-Moore category
Trace semantics
Science & Technology
topic Coalgebra
Kleisli category
Eilenberg-Moore category
Trace semantics
Science & Technology
description This paper takes a fresh look at the topic of trace semantics in the theory of coalgebras. The first development of coalgebraic trace semantics used final coalgebras in Kleisli categories, stemming from an initial algebra in the underlying category (see notably~\cite{HasuoJS07}). This approach requires some non-trivial assumptions, like dcpo enrichment, which do not always hold, even in cases where one can reasonably speak of traces (like for weighted automata). More recently, it has been noticed (see~\cite{SBBR10}) that trace semantics can also arise by first performing a determinization construction. In this paper, we develop a systematic approach, in which the two approaches correspond to different orders of composing a functor and a monad, and accordingly, to different distributive laws. The relevant final coalgebra that gives rise to trace semantics does not live in a Kleisli category, but more generally, in a category of Eilenberg-Moore algebras. In order to exploit its finality, we identify an extension operation, that changes the state space of a coalgebra into a free algebra, which abstractly captures determinization of automata. Notably, we show that the two different views on trace semantics are equivalent, in the examples where both approaches are applicable.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/37870
url http://hdl.handle.net/1822/37870
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Jacobs, B., Silva, A., & Sokolova, A. (2015). Trace semantics via determinization. Journal of Computer and System Sciences, 81(5), 859-879. doi: 10.1016/j.jcss.2014.12.005
0022-0000
10.1016/j.jcss.2014.12.005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press
Springer
publisher.none.fl_str_mv Academic Press
Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133131716952064