Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedale

Detalhes bibliográficos
Autor(a) principal: Santos, R
Data de Publicação: 1995
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/11684
Resumo: The temporal dynamics of the frequency distributions of 2 measures of Gelidium sesquipedale frond size, length and weight, was investigated in a subtidal stand under commercial exploitation. Frond weight/length allometry was highly variable, both seasonally and between years, showing that in this species weight and length cannot be used interchangeably as a measure of frond size. Physical disturbances played a fundamental role in allometric variability. The loss of branches due to commercial harvest and storms reduced the slope of the log weight/log length relationship. During spring the slope increased, indicating the production and growth of lateral branches. Size differences among individuals in the population (inequality) were quantified by 3 statistics: the skewness coefficient (g(1)), the coefficient of variation (CV), and the Gini coefficient (G). Highly significant changes in frond length inequality, but not weight, were shown. These correspond to periods when G. sesquipedale length structure varied due to the combined effects of the demographic parameters that regulate the population (frond recruitment, survival, breakage and growth). Graphical analysis of significantly different length structures revealed that a recruitment peak of vegetatively developed fronds occurred during winter, following periods of high frond mortality and breakage caused by both human (summer harvesting) and natural (late fall storms) disturbances. During late spring and summer, the density of smaller fronds decreased due to mortality and growth into higher size classes. To assess density-dependent regulation processes, such as suppressed growth of smaller fronds and self-thinning, the time variation of both relationships, inequality/mean frond weight and biomass/density, was analysed. Inequality/mean frond weight and biomass/density values decreased from summer to winter and increased to the following summer. The increase of inequality while mean frond weight is increasing is consistent with the asymmetric competition theory on the development of crowded plant stands, and supports the hypothesis that the slower growth of smaller fronds during this period (Santos 1994; Mar. Ecol. Prog. Ser. 107: 295-305) is due to intraspecific competition. The time trajectory of the biomass/density relationship is perpendicular to and lies above the theoretical self-thinning line. Evidence for self-thinning was thus not detected. A conceptual model for the functioning of this population is proposed. Thinning and frond breakage caused by disturbances might be keeping intraspecific competition in these G. sesquipedale crowded stands (up to 18 000 fronds m(-2)) at low levels.
id RCAP_df5ad1581870c99c99220f765a72cf22
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11684
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedaleSelf-thinning rulePlant-populationsPower lawDensityGrowthCompetitionRhodophytaDistributionsVariabilitySuppressionThe temporal dynamics of the frequency distributions of 2 measures of Gelidium sesquipedale frond size, length and weight, was investigated in a subtidal stand under commercial exploitation. Frond weight/length allometry was highly variable, both seasonally and between years, showing that in this species weight and length cannot be used interchangeably as a measure of frond size. Physical disturbances played a fundamental role in allometric variability. The loss of branches due to commercial harvest and storms reduced the slope of the log weight/log length relationship. During spring the slope increased, indicating the production and growth of lateral branches. Size differences among individuals in the population (inequality) were quantified by 3 statistics: the skewness coefficient (g(1)), the coefficient of variation (CV), and the Gini coefficient (G). Highly significant changes in frond length inequality, but not weight, were shown. These correspond to periods when G. sesquipedale length structure varied due to the combined effects of the demographic parameters that regulate the population (frond recruitment, survival, breakage and growth). Graphical analysis of significantly different length structures revealed that a recruitment peak of vegetatively developed fronds occurred during winter, following periods of high frond mortality and breakage caused by both human (summer harvesting) and natural (late fall storms) disturbances. During late spring and summer, the density of smaller fronds decreased due to mortality and growth into higher size classes. To assess density-dependent regulation processes, such as suppressed growth of smaller fronds and self-thinning, the time variation of both relationships, inequality/mean frond weight and biomass/density, was analysed. Inequality/mean frond weight and biomass/density values decreased from summer to winter and increased to the following summer. The increase of inequality while mean frond weight is increasing is consistent with the asymmetric competition theory on the development of crowded plant stands, and supports the hypothesis that the slower growth of smaller fronds during this period (Santos 1994; Mar. Ecol. Prog. Ser. 107: 295-305) is due to intraspecific competition. The time trajectory of the biomass/density relationship is perpendicular to and lies above the theoretical self-thinning line. Evidence for self-thinning was thus not detected. A conceptual model for the functioning of this population is proposed. Thinning and frond breakage caused by disturbances might be keeping intraspecific competition in these G. sesquipedale crowded stands (up to 18 000 fronds m(-2)) at low levels.Inter-ResearchSapientiaSantos, R2018-12-07T14:53:47Z1995-031995-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11684eng0171-863010.3354/meps119253info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:31Zoai:sapientia.ualg.pt:10400.1/11684Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:03:09.217907Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedale
title Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedale
spellingShingle Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedale
Santos, R
Self-thinning rule
Plant-populations
Power law
Density
Growth
Competition
Rhodophyta
Distributions
Variability
Suppression
title_short Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedale
title_full Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedale
title_fullStr Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedale
title_full_unstemmed Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedale
title_sort Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedale
author Santos, R
author_facet Santos, R
author_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Santos, R
dc.subject.por.fl_str_mv Self-thinning rule
Plant-populations
Power law
Density
Growth
Competition
Rhodophyta
Distributions
Variability
Suppression
topic Self-thinning rule
Plant-populations
Power law
Density
Growth
Competition
Rhodophyta
Distributions
Variability
Suppression
description The temporal dynamics of the frequency distributions of 2 measures of Gelidium sesquipedale frond size, length and weight, was investigated in a subtidal stand under commercial exploitation. Frond weight/length allometry was highly variable, both seasonally and between years, showing that in this species weight and length cannot be used interchangeably as a measure of frond size. Physical disturbances played a fundamental role in allometric variability. The loss of branches due to commercial harvest and storms reduced the slope of the log weight/log length relationship. During spring the slope increased, indicating the production and growth of lateral branches. Size differences among individuals in the population (inequality) were quantified by 3 statistics: the skewness coefficient (g(1)), the coefficient of variation (CV), and the Gini coefficient (G). Highly significant changes in frond length inequality, but not weight, were shown. These correspond to periods when G. sesquipedale length structure varied due to the combined effects of the demographic parameters that regulate the population (frond recruitment, survival, breakage and growth). Graphical analysis of significantly different length structures revealed that a recruitment peak of vegetatively developed fronds occurred during winter, following periods of high frond mortality and breakage caused by both human (summer harvesting) and natural (late fall storms) disturbances. During late spring and summer, the density of smaller fronds decreased due to mortality and growth into higher size classes. To assess density-dependent regulation processes, such as suppressed growth of smaller fronds and self-thinning, the time variation of both relationships, inequality/mean frond weight and biomass/density, was analysed. Inequality/mean frond weight and biomass/density values decreased from summer to winter and increased to the following summer. The increase of inequality while mean frond weight is increasing is consistent with the asymmetric competition theory on the development of crowded plant stands, and supports the hypothesis that the slower growth of smaller fronds during this period (Santos 1994; Mar. Ecol. Prog. Ser. 107: 295-305) is due to intraspecific competition. The time trajectory of the biomass/density relationship is perpendicular to and lies above the theoretical self-thinning line. Evidence for self-thinning was thus not detected. A conceptual model for the functioning of this population is proposed. Thinning and frond breakage caused by disturbances might be keeping intraspecific competition in these G. sesquipedale crowded stands (up to 18 000 fronds m(-2)) at low levels.
publishDate 1995
dc.date.none.fl_str_mv 1995-03
1995-03-01T00:00:00Z
2018-12-07T14:53:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11684
url http://hdl.handle.net/10400.1/11684
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0171-8630
10.3354/meps119253
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Inter-Research
publisher.none.fl_str_mv Inter-Research
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133266083577856