Deep multiblock predictive modelling using parallel input convolutional neural networks

Detalhes bibliográficos
Autor(a) principal: Mishra, Puneet
Data de Publicação: 2021
Outros Autores: Passos, Dário
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/15491
Resumo: In the domain of chemometrics, multiblock data analysis is widely performed for exploring or fusing data from multiple sources. Commonly used methods for multiblock predictive analysis are the extensions of latent space modelling approaches. However, recently, deep learning (DL) approaches such as convolutional neural networks (CNNs) have outperformed the single block traditional latent space modelling chemometric approaches such as partial least-square (PLS) regression. The CNNs based DL modelling can also be performed to simultaneously deal with the multiblock data but was never explored until this study. Hence, this study for the first time presents the concept of parallel input CNNs based DL modelling for multiblock predictive chemometric analysis. The parallel input CNNs based DL modelling utilizes individual convolutional layers for each data block to extract key features that are later combined and passed to a regression module composed of fully connected layers. The method was tested on a real visible and near-infrared (Vis-NIR) large data set related to dry matter prediction in mango fruit. To have the multiblock data, the visible (Vis) and near-infrared (NIR) parts were treated as two separate blocks. The performance of the parallel input CNN was compared with the traditional single block CNNs based DL modelling, as well as with a commonly used multiblock chemometric approach called sequentially orthogonalized partial least-square (SO-PLS) regression. The results showed that the proposed parallel input CNNs based deep multiblock analysis outperformed the single block CNNs based DL modelling and the SO-PLS regression analysis. The root means squared errors of prediction obtained with deep multiblock analysis was 0.818%, relatively lower by 4 and 20% than single block CNNs and SO-PLS regression, respectively. Furthermore, the deep multiblock approach attained ~3% lower RMSE compared to the best known on the mango data set used for this study. The deep multiblock analysis approach based on parallel input CNNs could be considered as a useful tool for fusing data from multiple sources.
id RCAP_df77bd5d225956666013bcb8217aff32
oai_identifier_str oai:sapientia.ualg.pt:10400.1/15491
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Deep multiblock predictive modelling using parallel input convolutional neural networksData fusionArtificial intelligenceSpectroscopyChemistryIn the domain of chemometrics, multiblock data analysis is widely performed for exploring or fusing data from multiple sources. Commonly used methods for multiblock predictive analysis are the extensions of latent space modelling approaches. However, recently, deep learning (DL) approaches such as convolutional neural networks (CNNs) have outperformed the single block traditional latent space modelling chemometric approaches such as partial least-square (PLS) regression. The CNNs based DL modelling can also be performed to simultaneously deal with the multiblock data but was never explored until this study. Hence, this study for the first time presents the concept of parallel input CNNs based DL modelling for multiblock predictive chemometric analysis. The parallel input CNNs based DL modelling utilizes individual convolutional layers for each data block to extract key features that are later combined and passed to a regression module composed of fully connected layers. The method was tested on a real visible and near-infrared (Vis-NIR) large data set related to dry matter prediction in mango fruit. To have the multiblock data, the visible (Vis) and near-infrared (NIR) parts were treated as two separate blocks. The performance of the parallel input CNN was compared with the traditional single block CNNs based DL modelling, as well as with a commonly used multiblock chemometric approach called sequentially orthogonalized partial least-square (SO-PLS) regression. The results showed that the proposed parallel input CNNs based deep multiblock analysis outperformed the single block CNNs based DL modelling and the SO-PLS regression analysis. The root means squared errors of prediction obtained with deep multiblock analysis was 0.818%, relatively lower by 4 and 20% than single block CNNs and SO-PLS regression, respectively. Furthermore, the deep multiblock approach attained ~3% lower RMSE compared to the best known on the mango data set used for this study. The deep multiblock analysis approach based on parallel input CNNs could be considered as a useful tool for fusing data from multiple sources.ElsevierSapientiaMishra, PuneetPassos, Dário2021-05-20T11:52:16Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/15491eng0003-267010.1016/j.aca.2021.338520info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:27:55Zoai:sapientia.ualg.pt:10400.1/15491Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:06:21.176732Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Deep multiblock predictive modelling using parallel input convolutional neural networks
title Deep multiblock predictive modelling using parallel input convolutional neural networks
spellingShingle Deep multiblock predictive modelling using parallel input convolutional neural networks
Mishra, Puneet
Data fusion
Artificial intelligence
Spectroscopy
Chemistry
title_short Deep multiblock predictive modelling using parallel input convolutional neural networks
title_full Deep multiblock predictive modelling using parallel input convolutional neural networks
title_fullStr Deep multiblock predictive modelling using parallel input convolutional neural networks
title_full_unstemmed Deep multiblock predictive modelling using parallel input convolutional neural networks
title_sort Deep multiblock predictive modelling using parallel input convolutional neural networks
author Mishra, Puneet
author_facet Mishra, Puneet
Passos, Dário
author_role author
author2 Passos, Dário
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Mishra, Puneet
Passos, Dário
dc.subject.por.fl_str_mv Data fusion
Artificial intelligence
Spectroscopy
Chemistry
topic Data fusion
Artificial intelligence
Spectroscopy
Chemistry
description In the domain of chemometrics, multiblock data analysis is widely performed for exploring or fusing data from multiple sources. Commonly used methods for multiblock predictive analysis are the extensions of latent space modelling approaches. However, recently, deep learning (DL) approaches such as convolutional neural networks (CNNs) have outperformed the single block traditional latent space modelling chemometric approaches such as partial least-square (PLS) regression. The CNNs based DL modelling can also be performed to simultaneously deal with the multiblock data but was never explored until this study. Hence, this study for the first time presents the concept of parallel input CNNs based DL modelling for multiblock predictive chemometric analysis. The parallel input CNNs based DL modelling utilizes individual convolutional layers for each data block to extract key features that are later combined and passed to a regression module composed of fully connected layers. The method was tested on a real visible and near-infrared (Vis-NIR) large data set related to dry matter prediction in mango fruit. To have the multiblock data, the visible (Vis) and near-infrared (NIR) parts were treated as two separate blocks. The performance of the parallel input CNN was compared with the traditional single block CNNs based DL modelling, as well as with a commonly used multiblock chemometric approach called sequentially orthogonalized partial least-square (SO-PLS) regression. The results showed that the proposed parallel input CNNs based deep multiblock analysis outperformed the single block CNNs based DL modelling and the SO-PLS regression analysis. The root means squared errors of prediction obtained with deep multiblock analysis was 0.818%, relatively lower by 4 and 20% than single block CNNs and SO-PLS regression, respectively. Furthermore, the deep multiblock approach attained ~3% lower RMSE compared to the best known on the mango data set used for this study. The deep multiblock analysis approach based on parallel input CNNs could be considered as a useful tool for fusing data from multiple sources.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-20T11:52:16Z
2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/15491
url http://hdl.handle.net/10400.1/15491
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0003-2670
10.1016/j.aca.2021.338520
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133304752963584