Modeling of bioethanol production by yeasts: contribution to a biorefinery

Detalhes bibliográficos
Autor(a) principal: Dinis, Maria Rita Torres
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29413
Resumo: Second-generation bioethanol is produced from lignocellulosic biomass, namely sub-products from the pulp and paper industry. This work follows the research done by the group on bioethanol production from fermentation of sulfite spent liquor (HSSL) with the yeast Scheffersomyces stipitis, and it aims to evaluate and model the inhibitory effect of the acetic acid on the ethanol yield and productivity. For this, experimental data of batch fermentations with S. stipitis was used, in synthetic medium with xylose, glucose and acetic acid as substrates. The ethanol fermentation mechanism has been thoroughly studied and described over the years, and it is based on the Monod equation for microorganism growth. Among the available kinetic models, 12 were selected and allowed to develop a mathematical tool able to describe the biomass, the substrates and the product concentration profiles as function of time. Furthermore, the algorithm developed allowed to create a stand-alone application for distribution. With the modeled profiles, it was possible to conclude that the acid presence affects negatively both the length of the lag phase and the maximum ethanol concentration, thus causing a substantial decrease in the ethanol productivity and yield on substrate. Moreover, the increase in the initial acetic acid concentration causes the decrease in the substrate consumption rate, prolonging even further the time to reach the maximum ethanol concentration. This concentration value, however, is only significantly affected when the initial acid concentration is higher than 6 g/L. Comparing the synthetic medium experimental data to a 60% HSSL sample, it was possible to conclude that the acetic acid is not the only inhibitory compound present in the liquor, nor are the three substrates considered the only ones consumed by the yeasts. The change from synthetic medium to HSSL caused a significant extension of the lag phase and decrease of the maximum ethanol concentration, again causing the ethanol productivity to decrease considerably. The maximum biomass concentration, however, was much higher for the 60% HSSL sample. Furthermore, in this sample the xylose concentration never reached zero, contrary to what was observed in all synthetic medium samples, where the sugars were always exhausted. Therefore, in the future, the mathematical tool developed could be adapted and used to model the influence of the other relevant compounds present in the liquor, in order to study accurately and conclusively the HSSL fermentations.
id RCAP_df8832934033d7864cf2a9b7be0dccde
oai_identifier_str oai:ria.ua.pt:10773/29413
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modeling of bioethanol production by yeasts: contribution to a biorefineryModelingBioethanolFermentation kineticsConcentration profilesSecond-generation bioethanol is produced from lignocellulosic biomass, namely sub-products from the pulp and paper industry. This work follows the research done by the group on bioethanol production from fermentation of sulfite spent liquor (HSSL) with the yeast Scheffersomyces stipitis, and it aims to evaluate and model the inhibitory effect of the acetic acid on the ethanol yield and productivity. For this, experimental data of batch fermentations with S. stipitis was used, in synthetic medium with xylose, glucose and acetic acid as substrates. The ethanol fermentation mechanism has been thoroughly studied and described over the years, and it is based on the Monod equation for microorganism growth. Among the available kinetic models, 12 were selected and allowed to develop a mathematical tool able to describe the biomass, the substrates and the product concentration profiles as function of time. Furthermore, the algorithm developed allowed to create a stand-alone application for distribution. With the modeled profiles, it was possible to conclude that the acid presence affects negatively both the length of the lag phase and the maximum ethanol concentration, thus causing a substantial decrease in the ethanol productivity and yield on substrate. Moreover, the increase in the initial acetic acid concentration causes the decrease in the substrate consumption rate, prolonging even further the time to reach the maximum ethanol concentration. This concentration value, however, is only significantly affected when the initial acid concentration is higher than 6 g/L. Comparing the synthetic medium experimental data to a 60% HSSL sample, it was possible to conclude that the acetic acid is not the only inhibitory compound present in the liquor, nor are the three substrates considered the only ones consumed by the yeasts. The change from synthetic medium to HSSL caused a significant extension of the lag phase and decrease of the maximum ethanol concentration, again causing the ethanol productivity to decrease considerably. The maximum biomass concentration, however, was much higher for the 60% HSSL sample. Furthermore, in this sample the xylose concentration never reached zero, contrary to what was observed in all synthetic medium samples, where the sugars were always exhausted. Therefore, in the future, the mathematical tool developed could be adapted and used to model the influence of the other relevant compounds present in the liquor, in order to study accurately and conclusively the HSSL fermentations.Bioetanol de segunda geração é produzido a partir de biomassa lenho-celulósica, nomeadamente subprodutos da indústria da pasta de papel. Este trabalho dá seguimento à investigação que tem sido feita sobre a produção de bioetanol a partir da fermentação de licor de cozimento ao sulfito ácido (HSSL) com a levedura Scheffersomyces stipitis, e tem como objetivo avaliar e modelar o efeito inibitório que o ácido acético tem sobre o rendimento e produtividade de etanol. Para isso, foram utilizados dados experimentais de fermentações batch com S. stipitis em meio sintético com xilose, glucose e ácido acético como substratos. O bioprocesso de fermentação a etanol tem sido amplamente estudado e descrito ao longo dos anos, e baseia-se na equação de Monod para crescimento de microrganismos. De entre os modelos cinéticos disponíveis, foram selecionados 12 que permitiram desenvolver uma ferramenta matemática capaz de descrever os perfis de concentração da biomassa, dos substratos e do produto em função do tempo. O algoritmo desenvolvido foi ainda adaptado para desenvolver um programa Stand-alone de distribuição livre. A partir dos perfis modelados, foi possível concluir que a presença do ácido afeta negativamente tanto a extensão da fase lag como a concentração máxima de etanol, causando uma queda significativa no rendimento e produtividade de etanol. Para além disso, o aumento da concentração inicial de ácido provoca a diminuição da taxa de consumo de substrato, prolongando ainda mais o tempo até se atingir a concentração máxima de etanol. No entanto, o valor desta concentração só é significativamente afetado quando a concentração inicial de ácido é superior a 6 g/L. Comparando os dados experimentais de meio sintético com um ensaio com 60% de HSSL, foi possível concluir que o ácido acético não é o único inibidor presente no licor e que os três substratos considerados não são os únicos consumidos pelas leveduras. A mudança de meio sintético para HSSL causou um aumento significativo da fase lag e diminuição da concentração máxima de etanol, provocando novamente uma queda significativa da produtividade de etanol. Por outro lado, a concentração máxima de biomassa aumentou consideravelmente para o ensaio com 60% HSSL. Adicionalmente, neste ensaio a concentração de xilose nunca atingiu o zero, ao contrário do que foi observado para todos os ensaios em meio sintético, onde os açucares foram sempre esgotados. Portanto, no futuro, a ferramenta matemática desenvolvida poderá ser adaptada e utilizada para modelar a influência de outros compostos relevantes presentes no licor, de forma a ser possível analisar de modo preciso e conclusivo a fermentação de HSSL.2019-072019-07-01T00:00:00Z2021-07-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29413engDinis, Maria Rita Torresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:56:54Zoai:ria.ua.pt:10773/29413Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:45.779834Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modeling of bioethanol production by yeasts: contribution to a biorefinery
title Modeling of bioethanol production by yeasts: contribution to a biorefinery
spellingShingle Modeling of bioethanol production by yeasts: contribution to a biorefinery
Dinis, Maria Rita Torres
Modeling
Bioethanol
Fermentation kinetics
Concentration profiles
title_short Modeling of bioethanol production by yeasts: contribution to a biorefinery
title_full Modeling of bioethanol production by yeasts: contribution to a biorefinery
title_fullStr Modeling of bioethanol production by yeasts: contribution to a biorefinery
title_full_unstemmed Modeling of bioethanol production by yeasts: contribution to a biorefinery
title_sort Modeling of bioethanol production by yeasts: contribution to a biorefinery
author Dinis, Maria Rita Torres
author_facet Dinis, Maria Rita Torres
author_role author
dc.contributor.author.fl_str_mv Dinis, Maria Rita Torres
dc.subject.por.fl_str_mv Modeling
Bioethanol
Fermentation kinetics
Concentration profiles
topic Modeling
Bioethanol
Fermentation kinetics
Concentration profiles
description Second-generation bioethanol is produced from lignocellulosic biomass, namely sub-products from the pulp and paper industry. This work follows the research done by the group on bioethanol production from fermentation of sulfite spent liquor (HSSL) with the yeast Scheffersomyces stipitis, and it aims to evaluate and model the inhibitory effect of the acetic acid on the ethanol yield and productivity. For this, experimental data of batch fermentations with S. stipitis was used, in synthetic medium with xylose, glucose and acetic acid as substrates. The ethanol fermentation mechanism has been thoroughly studied and described over the years, and it is based on the Monod equation for microorganism growth. Among the available kinetic models, 12 were selected and allowed to develop a mathematical tool able to describe the biomass, the substrates and the product concentration profiles as function of time. Furthermore, the algorithm developed allowed to create a stand-alone application for distribution. With the modeled profiles, it was possible to conclude that the acid presence affects negatively both the length of the lag phase and the maximum ethanol concentration, thus causing a substantial decrease in the ethanol productivity and yield on substrate. Moreover, the increase in the initial acetic acid concentration causes the decrease in the substrate consumption rate, prolonging even further the time to reach the maximum ethanol concentration. This concentration value, however, is only significantly affected when the initial acid concentration is higher than 6 g/L. Comparing the synthetic medium experimental data to a 60% HSSL sample, it was possible to conclude that the acetic acid is not the only inhibitory compound present in the liquor, nor are the three substrates considered the only ones consumed by the yeasts. The change from synthetic medium to HSSL caused a significant extension of the lag phase and decrease of the maximum ethanol concentration, again causing the ethanol productivity to decrease considerably. The maximum biomass concentration, however, was much higher for the 60% HSSL sample. Furthermore, in this sample the xylose concentration never reached zero, contrary to what was observed in all synthetic medium samples, where the sugars were always exhausted. Therefore, in the future, the mathematical tool developed could be adapted and used to model the influence of the other relevant compounds present in the liquor, in order to study accurately and conclusively the HSSL fermentations.
publishDate 2019
dc.date.none.fl_str_mv 2019-07
2019-07-01T00:00:00Z
2021-07-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29413
url http://hdl.handle.net/10773/29413
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137673329246208