Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways

Detalhes bibliográficos
Autor(a) principal: Branco, Ana F.
Data de Publicação: 2013
Outros Autores: Sampaio, Susana F., Wieckowski, Mariusz R., Sardão, Vilma A., Oliveira, Paulo J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/26910
https://doi.org/10.1016/j.biocel.2013.08.006
Resumo: β-Adrenergic receptor stimulation plays an important role in cardiomyocyte stress responses, which may result in apoptosis and cardiovascular degeneration. We previously demonstrated that toxicity of the β-adrenergic agonist isoproterenol on H9c2 cardiomyoblasts depends on the stage of cell differentiation. We now investigate β-adrenergic receptor downstream signaling pathways and stress responses that explain the impact of muscle cell differentiation on hyper-β-adrenergic stimulation-induced cytotoxicity. When incubated with isoproterenol, differentiated H9c2 muscle cells have increased cytosolic calcium, cyclic-adenosine monophosphate content and oxidative stress, as well as mitochondrial depolarization, increased superoxide anion, loss of subunits from the mitochondrial respiratory chain, decreased Bcl-xL content, increased p53 and phosphorylated-p66Shc as well as activated caspase-3. Undifferentiated H9c2 cells incubated with isoproterenol showed increased Bcl-xL protein and increased superoxide dismutase 2 which may act as protective mechanisms. We conclude that the differentiation of H9c2 is associated with differential regulation of stress responses, which impact the toxicity of several agents, namely those acting through β-adrenergic receptors and resulting in mitochondrial disruption in differentiated cells only.
id RCAP_df9e31227a486e6d81d913910cac7b7d
oai_identifier_str oai:estudogeral.uc.pt:10316/26910
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathwaysIsoproterenolβ-Adrenergic signalingApoptosisMitochondriaH9c2 myoblasts differentiationβ-Adrenergic receptor stimulation plays an important role in cardiomyocyte stress responses, which may result in apoptosis and cardiovascular degeneration. We previously demonstrated that toxicity of the β-adrenergic agonist isoproterenol on H9c2 cardiomyoblasts depends on the stage of cell differentiation. We now investigate β-adrenergic receptor downstream signaling pathways and stress responses that explain the impact of muscle cell differentiation on hyper-β-adrenergic stimulation-induced cytotoxicity. When incubated with isoproterenol, differentiated H9c2 muscle cells have increased cytosolic calcium, cyclic-adenosine monophosphate content and oxidative stress, as well as mitochondrial depolarization, increased superoxide anion, loss of subunits from the mitochondrial respiratory chain, decreased Bcl-xL content, increased p53 and phosphorylated-p66Shc as well as activated caspase-3. Undifferentiated H9c2 cells incubated with isoproterenol showed increased Bcl-xL protein and increased superoxide dismutase 2 which may act as protective mechanisms. We conclude that the differentiation of H9c2 is associated with differential regulation of stress responses, which impact the toxicity of several agents, namely those acting through β-adrenergic receptors and resulting in mitochondrial disruption in differentiated cells only.Elsevier2013-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/26910http://hdl.handle.net/10316/26910https://doi.org/10.1016/j.biocel.2013.08.006engBRANCO, Ana F. [et al.] - Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways. "The International Journal of Biochemistry & Cell Biology". ISSN 1357-2725. Vol. 45 Nº. 11 (2013) p. 2379-23911357-2725http://www.sciencedirect.com/science/article/pii/S1357272513002598Branco, Ana F.Sampaio, Susana F.Wieckowski, Mariusz R.Sardão, Vilma A.Oliveira, Paulo J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-10-06T09:57:27Zoai:estudogeral.uc.pt:10316/26910Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:35.181294Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways
title Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways
spellingShingle Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways
Branco, Ana F.
Isoproterenol
β-Adrenergic signaling
Apoptosis
Mitochondria
H9c2 myoblasts differentiation
title_short Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways
title_full Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways
title_fullStr Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways
title_full_unstemmed Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways
title_sort Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways
author Branco, Ana F.
author_facet Branco, Ana F.
Sampaio, Susana F.
Wieckowski, Mariusz R.
Sardão, Vilma A.
Oliveira, Paulo J.
author_role author
author2 Sampaio, Susana F.
Wieckowski, Mariusz R.
Sardão, Vilma A.
Oliveira, Paulo J.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Branco, Ana F.
Sampaio, Susana F.
Wieckowski, Mariusz R.
Sardão, Vilma A.
Oliveira, Paulo J.
dc.subject.por.fl_str_mv Isoproterenol
β-Adrenergic signaling
Apoptosis
Mitochondria
H9c2 myoblasts differentiation
topic Isoproterenol
β-Adrenergic signaling
Apoptosis
Mitochondria
H9c2 myoblasts differentiation
description β-Adrenergic receptor stimulation plays an important role in cardiomyocyte stress responses, which may result in apoptosis and cardiovascular degeneration. We previously demonstrated that toxicity of the β-adrenergic agonist isoproterenol on H9c2 cardiomyoblasts depends on the stage of cell differentiation. We now investigate β-adrenergic receptor downstream signaling pathways and stress responses that explain the impact of muscle cell differentiation on hyper-β-adrenergic stimulation-induced cytotoxicity. When incubated with isoproterenol, differentiated H9c2 muscle cells have increased cytosolic calcium, cyclic-adenosine monophosphate content and oxidative stress, as well as mitochondrial depolarization, increased superoxide anion, loss of subunits from the mitochondrial respiratory chain, decreased Bcl-xL content, increased p53 and phosphorylated-p66Shc as well as activated caspase-3. Undifferentiated H9c2 cells incubated with isoproterenol showed increased Bcl-xL protein and increased superoxide dismutase 2 which may act as protective mechanisms. We conclude that the differentiation of H9c2 is associated with differential regulation of stress responses, which impact the toxicity of several agents, namely those acting through β-adrenergic receptors and resulting in mitochondrial disruption in differentiated cells only.
publishDate 2013
dc.date.none.fl_str_mv 2013-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/26910
http://hdl.handle.net/10316/26910
https://doi.org/10.1016/j.biocel.2013.08.006
url http://hdl.handle.net/10316/26910
https://doi.org/10.1016/j.biocel.2013.08.006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv BRANCO, Ana F. [et al.] - Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways. "The International Journal of Biochemistry & Cell Biology". ISSN 1357-2725. Vol. 45 Nº. 11 (2013) p. 2379-2391
1357-2725
http://www.sciencedirect.com/science/article/pii/S1357272513002598
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133822344757248