Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/42526 |
Resumo: | Objectives: The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. Methods: Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation’s tests, while Vicker’s hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey’s test (p < 0.05). Results: After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78–80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. Conclusions: A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. Clinical significance: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation. Graphical Abstract: [Figure not available: see fulltext.]. |
id |
RCAP_dfa20e44f4c2abad23c98a14b061107f |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/42526 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistryDegree of conversionFillersInorganic particlesLight curingLight transmittancePolymerizationResin-matrix compositeObjectives: The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. Methods: Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation’s tests, while Vicker’s hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey’s test (p < 0.05). Results: After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78–80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. Conclusions: A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. Clinical significance: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation. Graphical Abstract: [Figure not available: see fulltext.].Veritati - Repositório Institucional da Universidade Católica PortuguesaFidalgo-Pereira, RitaCarvalho, ÓscarCatarino, Susana O.Henriques, BrunoTorres, OrlandaBraem, AnnabelSouza, Júlio C. M.2023-09-20T15:38:37Z2023-092023-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/42526eng1432-698110.1007/s00784-023-05189-785168267343PMC1049274737592003001050378000001info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-09T01:37:06Zoai:repositorio.ucp.pt:10400.14/42526Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:30:58.447969Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry |
title |
Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry |
spellingShingle |
Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry Fidalgo-Pereira, Rita Degree of conversion Fillers Inorganic particles Light curing Light transmittance Polymerization Resin-matrix composite |
title_short |
Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry |
title_full |
Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry |
title_fullStr |
Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry |
title_full_unstemmed |
Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry |
title_sort |
Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry |
author |
Fidalgo-Pereira, Rita |
author_facet |
Fidalgo-Pereira, Rita Carvalho, Óscar Catarino, Susana O. Henriques, Bruno Torres, Orlanda Braem, Annabel Souza, Júlio C. M. |
author_role |
author |
author2 |
Carvalho, Óscar Catarino, Susana O. Henriques, Bruno Torres, Orlanda Braem, Annabel Souza, Júlio C. M. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Fidalgo-Pereira, Rita Carvalho, Óscar Catarino, Susana O. Henriques, Bruno Torres, Orlanda Braem, Annabel Souza, Júlio C. M. |
dc.subject.por.fl_str_mv |
Degree of conversion Fillers Inorganic particles Light curing Light transmittance Polymerization Resin-matrix composite |
topic |
Degree of conversion Fillers Inorganic particles Light curing Light transmittance Polymerization Resin-matrix composite |
description |
Objectives: The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. Methods: Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation’s tests, while Vicker’s hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey’s test (p < 0.05). Results: After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78–80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. Conclusions: A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. Clinical significance: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation. Graphical Abstract: [Figure not available: see fulltext.]. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-20T15:38:37Z 2023-09 2023-09-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/42526 |
url |
http://hdl.handle.net/10400.14/42526 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1432-6981 10.1007/s00784-023-05189-7 85168267343 PMC10492747 37592003 001050378000001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133578444931072 |