Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry

Detalhes bibliográficos
Autor(a) principal: Fidalgo-Pereira, Rita
Data de Publicação: 2023
Outros Autores: Carvalho, Óscar, Catarino, Susana O., Henriques, Bruno, Torres, Orlanda, Braem, Annabel, Souza, Júlio C. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/42526
Resumo: Objectives: The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. Methods: Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation’s tests, while Vicker’s hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey’s test (p < 0.05). Results: After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78–80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. Conclusions: A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. Clinical significance: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation. Graphical Abstract: [Figure not available: see fulltext.].
id RCAP_dfa20e44f4c2abad23c98a14b061107f
oai_identifier_str oai:repositorio.ucp.pt:10400.14/42526
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistryDegree of conversionFillersInorganic particlesLight curingLight transmittancePolymerizationResin-matrix compositeObjectives: The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. Methods: Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation’s tests, while Vicker’s hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey’s test (p < 0.05). Results: After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78–80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. Conclusions: A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. Clinical significance: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation. Graphical Abstract: [Figure not available: see fulltext.].Veritati - Repositório Institucional da Universidade Católica PortuguesaFidalgo-Pereira, RitaCarvalho, ÓscarCatarino, Susana O.Henriques, BrunoTorres, OrlandaBraem, AnnabelSouza, Júlio C. M.2023-09-20T15:38:37Z2023-092023-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/42526eng1432-698110.1007/s00784-023-05189-785168267343PMC1049274737592003001050378000001info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-09T01:37:06Zoai:repositorio.ucp.pt:10400.14/42526Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:30:58.447969Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry
title Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry
spellingShingle Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry
Fidalgo-Pereira, Rita
Degree of conversion
Fillers
Inorganic particles
Light curing
Light transmittance
Polymerization
Resin-matrix composite
title_short Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry
title_full Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry
title_fullStr Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry
title_full_unstemmed Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry
title_sort Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry
author Fidalgo-Pereira, Rita
author_facet Fidalgo-Pereira, Rita
Carvalho, Óscar
Catarino, Susana O.
Henriques, Bruno
Torres, Orlanda
Braem, Annabel
Souza, Júlio C. M.
author_role author
author2 Carvalho, Óscar
Catarino, Susana O.
Henriques, Bruno
Torres, Orlanda
Braem, Annabel
Souza, Júlio C. M.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Fidalgo-Pereira, Rita
Carvalho, Óscar
Catarino, Susana O.
Henriques, Bruno
Torres, Orlanda
Braem, Annabel
Souza, Júlio C. M.
dc.subject.por.fl_str_mv Degree of conversion
Fillers
Inorganic particles
Light curing
Light transmittance
Polymerization
Resin-matrix composite
topic Degree of conversion
Fillers
Inorganic particles
Light curing
Light transmittance
Polymerization
Resin-matrix composite
description Objectives: The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. Methods: Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation’s tests, while Vicker’s hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey’s test (p < 0.05). Results: After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78–80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. Conclusions: A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. Clinical significance: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation. Graphical Abstract: [Figure not available: see fulltext.].
publishDate 2023
dc.date.none.fl_str_mv 2023-09-20T15:38:37Z
2023-09
2023-09-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/42526
url http://hdl.handle.net/10400.14/42526
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1432-6981
10.1007/s00784-023-05189-7
85168267343
PMC10492747
37592003
001050378000001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133578444931072