Forecast foreign exchange rate: The case study of PKR/USD
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/12542 |
Resumo: | The main aim of this paper is to forecast the future values of the exchange rate of the USD. Dollar (USD) and Pakistani Rupee (PR). For this purpose was used the ARIMA model to forecast the future exchange rates, because the time series was stationary at first difference. Data reported to five years ranging from the first day of April 2014 to 31st March 2019. The results proved that ARIMA (1,1,9) is the most suitable model to forecast the exchange rate. The difference between the forecasted values and actual values are less than 1%; therefore, it was found that the ARIMA is robust and this model will be helpful for the government functionaries, monetary policymakers, economists and other stakeholders to identify and forecast the future trend of the exchange rate and make their policies accordingly. |
id |
RCAP_dfac42a259e7dc7b8851c7623a988628 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/12542 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Forecast foreign exchange rate: The case study of PKR/USDAutoregressiveForecastingExchange rateARIMAThe main aim of this paper is to forecast the future values of the exchange rate of the USD. Dollar (USD) and Pakistani Rupee (PR). For this purpose was used the ARIMA model to forecast the future exchange rates, because the time series was stationary at first difference. Data reported to five years ranging from the first day of April 2014 to 31st March 2019. The results proved that ARIMA (1,1,9) is the most suitable model to forecast the exchange rate. The difference between the forecasted values and actual values are less than 1%; therefore, it was found that the ARIMA is robust and this model will be helpful for the government functionaries, monetary policymakers, economists and other stakeholders to identify and forecast the future trend of the exchange rate and make their policies accordingly.Richtmann PublishingRCIPLAsadUllah, MuhammadAhmad, NawazDos Santos, Maria José Palma Lampreia2021-01-05T09:07:57Z2020-07-102020-07-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/12542engAsadullah, M., Ahmad, N., & Dos-Santos, M. J. P.L.(2020, jul). Forecast foreign exchange rate: The case study of PKR/USD. Mediterranean Journal of Social Sciences (MJSS),11 (4)129-137. DOI:https://doi.org/10.36941/mjss-2020-0048.2039-2117https://doi.org/10.36941/mjss-2020-0048info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:05:38Zoai:repositorio.ipl.pt:10400.21/12542Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:20:36.709851Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Forecast foreign exchange rate: The case study of PKR/USD |
title |
Forecast foreign exchange rate: The case study of PKR/USD |
spellingShingle |
Forecast foreign exchange rate: The case study of PKR/USD AsadUllah, Muhammad Autoregressive Forecasting Exchange rate ARIMA |
title_short |
Forecast foreign exchange rate: The case study of PKR/USD |
title_full |
Forecast foreign exchange rate: The case study of PKR/USD |
title_fullStr |
Forecast foreign exchange rate: The case study of PKR/USD |
title_full_unstemmed |
Forecast foreign exchange rate: The case study of PKR/USD |
title_sort |
Forecast foreign exchange rate: The case study of PKR/USD |
author |
AsadUllah, Muhammad |
author_facet |
AsadUllah, Muhammad Ahmad, Nawaz Dos Santos, Maria José Palma Lampreia |
author_role |
author |
author2 |
Ahmad, Nawaz Dos Santos, Maria José Palma Lampreia |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
AsadUllah, Muhammad Ahmad, Nawaz Dos Santos, Maria José Palma Lampreia |
dc.subject.por.fl_str_mv |
Autoregressive Forecasting Exchange rate ARIMA |
topic |
Autoregressive Forecasting Exchange rate ARIMA |
description |
The main aim of this paper is to forecast the future values of the exchange rate of the USD. Dollar (USD) and Pakistani Rupee (PR). For this purpose was used the ARIMA model to forecast the future exchange rates, because the time series was stationary at first difference. Data reported to five years ranging from the first day of April 2014 to 31st March 2019. The results proved that ARIMA (1,1,9) is the most suitable model to forecast the exchange rate. The difference between the forecasted values and actual values are less than 1%; therefore, it was found that the ARIMA is robust and this model will be helpful for the government functionaries, monetary policymakers, economists and other stakeholders to identify and forecast the future trend of the exchange rate and make their policies accordingly. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-10 2020-07-10T00:00:00Z 2021-01-05T09:07:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/12542 |
url |
http://hdl.handle.net/10400.21/12542 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Asadullah, M., Ahmad, N., & Dos-Santos, M. J. P.L.(2020, jul). Forecast foreign exchange rate: The case study of PKR/USD. Mediterranean Journal of Social Sciences (MJSS),11 (4)129-137. DOI:https://doi.org/10.36941/mjss-2020-0048. 2039-2117 https://doi.org/10.36941/mjss-2020-0048 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Richtmann Publishing |
publisher.none.fl_str_mv |
Richtmann Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133475608985600 |