New Polymeric films for Smart Windows with Permanent Memory Effect

Detalhes bibliográficos
Autor(a) principal: Mouquinho, Ana Isabel Machado
Data de Publicação: 2019
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/84951
Resumo: In the field of the liquid crystals in device applications, the polymer dispersed liquid crystal (PDLC) with permanent memory effect can become feasible in technological applications. Although studies of the liquid crystals in technological applications were extensively reviewed in the literature, not so much has been reported on the permanent memory effect (PME) in PDLCs. PDLCs can change transmittance from a totally opaque state to a totally transparent state during the application of an external electric field. Typically, the opaque appearance returns to the PDLC when the electric field is switched OFF. However, in this work PDLCs have been produced that use the electric field to create a highly transparent state but the transparent state remains even when the electric field is switched OFF giving rise to a permanent alignment state of LC molecules. This property is called a permanent memory effect (PME). For optimizing this effect a series of linear polyethylene glycol di(meth)acrylate and multi-arm polyethylene glycol with linear chains arms extending radially from a central core with reactive (meth)acrylate end groups were synthesized and characterized. The resulting pre-polymers and also some commercial ones were then tested in preparation of PDLCs. The 70 % of PME and the reproducibility even after multiple repetitions of the heating and electric field cycles application make the poly(ethyleneglycol) dimethacrylate of molecular weight 875 g mol-1 the most appropriate pre-polymer in preparation of PDLCs with PME. This effect is also dependent on the thermal polymerization which produces a polymer ball morphology type in the polymer matrix. In addition, PME is also highly dependent on the alignment layer type coating the glass PDLC cell (homogeneous alignment). With the high transparent state permanently displayed at room temperature through PME (70 %), an efficient procedure to allow the PDLC to acquire its opaque state has been achieved. A method of removing the PME has been outlined by Joule effect with the application of the electric current to the conductive layer (ITO) of the glass PDLC cell. This procedure makes the experimental setup to destroy the LC alignment structure simpler and more practical than by radiation heat. Conventional PDLCs need continuity of energy supply for keeping the ON state, which can be a very limiting aspect for many applications. However, PDLCs with PME besides having lower power consumption can be used in digital memory devices based on write-read-erase cycles. For this, a prototype has been assembled as proof of the concept to be used in the digital process of recording information with the binary language.
id RCAP_dff8e6a517090724a4623e39a9f89375
oai_identifier_str oai:run.unl.pt:10362/84951
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling New Polymeric films for Smart Windows with Permanent Memory EffectLiquid crystalPDLCpoly(ethyleneglycol)permanent memory effectDomínio/Área Científica::Engenharia e Tecnologia::Engenharia QuímicaIn the field of the liquid crystals in device applications, the polymer dispersed liquid crystal (PDLC) with permanent memory effect can become feasible in technological applications. Although studies of the liquid crystals in technological applications were extensively reviewed in the literature, not so much has been reported on the permanent memory effect (PME) in PDLCs. PDLCs can change transmittance from a totally opaque state to a totally transparent state during the application of an external electric field. Typically, the opaque appearance returns to the PDLC when the electric field is switched OFF. However, in this work PDLCs have been produced that use the electric field to create a highly transparent state but the transparent state remains even when the electric field is switched OFF giving rise to a permanent alignment state of LC molecules. This property is called a permanent memory effect (PME). For optimizing this effect a series of linear polyethylene glycol di(meth)acrylate and multi-arm polyethylene glycol with linear chains arms extending radially from a central core with reactive (meth)acrylate end groups were synthesized and characterized. The resulting pre-polymers and also some commercial ones were then tested in preparation of PDLCs. The 70 % of PME and the reproducibility even after multiple repetitions of the heating and electric field cycles application make the poly(ethyleneglycol) dimethacrylate of molecular weight 875 g mol-1 the most appropriate pre-polymer in preparation of PDLCs with PME. This effect is also dependent on the thermal polymerization which produces a polymer ball morphology type in the polymer matrix. In addition, PME is also highly dependent on the alignment layer type coating the glass PDLC cell (homogeneous alignment). With the high transparent state permanently displayed at room temperature through PME (70 %), an efficient procedure to allow the PDLC to acquire its opaque state has been achieved. A method of removing the PME has been outlined by Joule effect with the application of the electric current to the conductive layer (ITO) of the glass PDLC cell. This procedure makes the experimental setup to destroy the LC alignment structure simpler and more practical than by radiation heat. Conventional PDLCs need continuity of energy supply for keeping the ON state, which can be a very limiting aspect for many applications. However, PDLCs with PME besides having lower power consumption can be used in digital memory devices based on write-read-erase cycles. For this, a prototype has been assembled as proof of the concept to be used in the digital process of recording information with the binary language.Sotomayor, JoãoRUNMouquinho, Ana Isabel Machado2019-10-21T10:32:57Z201920192019-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/84951TID:101641419enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:41:47Zoai:run.unl.pt:10362/84951Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:41:47Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv New Polymeric films for Smart Windows with Permanent Memory Effect
title New Polymeric films for Smart Windows with Permanent Memory Effect
spellingShingle New Polymeric films for Smart Windows with Permanent Memory Effect
Mouquinho, Ana Isabel Machado
Liquid crystal
PDLC
poly(ethyleneglycol)
permanent memory effect
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
title_short New Polymeric films for Smart Windows with Permanent Memory Effect
title_full New Polymeric films for Smart Windows with Permanent Memory Effect
title_fullStr New Polymeric films for Smart Windows with Permanent Memory Effect
title_full_unstemmed New Polymeric films for Smart Windows with Permanent Memory Effect
title_sort New Polymeric films for Smart Windows with Permanent Memory Effect
author Mouquinho, Ana Isabel Machado
author_facet Mouquinho, Ana Isabel Machado
author_role author
dc.contributor.none.fl_str_mv Sotomayor, João
RUN
dc.contributor.author.fl_str_mv Mouquinho, Ana Isabel Machado
dc.subject.por.fl_str_mv Liquid crystal
PDLC
poly(ethyleneglycol)
permanent memory effect
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
topic Liquid crystal
PDLC
poly(ethyleneglycol)
permanent memory effect
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
description In the field of the liquid crystals in device applications, the polymer dispersed liquid crystal (PDLC) with permanent memory effect can become feasible in technological applications. Although studies of the liquid crystals in technological applications were extensively reviewed in the literature, not so much has been reported on the permanent memory effect (PME) in PDLCs. PDLCs can change transmittance from a totally opaque state to a totally transparent state during the application of an external electric field. Typically, the opaque appearance returns to the PDLC when the electric field is switched OFF. However, in this work PDLCs have been produced that use the electric field to create a highly transparent state but the transparent state remains even when the electric field is switched OFF giving rise to a permanent alignment state of LC molecules. This property is called a permanent memory effect (PME). For optimizing this effect a series of linear polyethylene glycol di(meth)acrylate and multi-arm polyethylene glycol with linear chains arms extending radially from a central core with reactive (meth)acrylate end groups were synthesized and characterized. The resulting pre-polymers and also some commercial ones were then tested in preparation of PDLCs. The 70 % of PME and the reproducibility even after multiple repetitions of the heating and electric field cycles application make the poly(ethyleneglycol) dimethacrylate of molecular weight 875 g mol-1 the most appropriate pre-polymer in preparation of PDLCs with PME. This effect is also dependent on the thermal polymerization which produces a polymer ball morphology type in the polymer matrix. In addition, PME is also highly dependent on the alignment layer type coating the glass PDLC cell (homogeneous alignment). With the high transparent state permanently displayed at room temperature through PME (70 %), an efficient procedure to allow the PDLC to acquire its opaque state has been achieved. A method of removing the PME has been outlined by Joule effect with the application of the electric current to the conductive layer (ITO) of the glass PDLC cell. This procedure makes the experimental setup to destroy the LC alignment structure simpler and more practical than by radiation heat. Conventional PDLCs need continuity of energy supply for keeping the ON state, which can be a very limiting aspect for many applications. However, PDLCs with PME besides having lower power consumption can be used in digital memory devices based on write-read-erase cycles. For this, a prototype has been assembled as proof of the concept to be used in the digital process of recording information with the binary language.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-21T10:32:57Z
2019
2019
2019-01-01T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/84951
TID:101641419
url http://hdl.handle.net/10362/84951
identifier_str_mv TID:101641419
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545713690607616