Um sistema multimodal para a deteção de stress

Detalhes bibliográficos
Autor(a) principal: Correia, Hugo André Viana
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/21710
Resumo: Stress is the physiological or psychological response to internal or external factors, which can happen in short or long terms. Prolonged stress can be harmful since it affects the body, negatively, in several ways, thus contributing to mental and physical health problems. Although stress is not simple to properly identify, there are several studied approaches that solidify the existence of a correlation between stress and perceivable human features. In order to detect stress, there are several approaches that can be taken into consideration. However, this task is more difficult in uncontrolled environments and where non-invasive methods are required. Heart Rate Variability (HRV), facial expressions, eye blinks, pupil diameter and PERCLOS (percentage of eye closure) consist in non-invasive approaches, proved capable to accurately identify the mental stress present in people. For this project, the users’ physiological signals were collected by an external video-based application, in a non-invasive way. Moreover, data from a brief questionnaire was also used to complement the physiological data. After the proposed solution was implemented and tested, it was concluded that the best algorithm for stress detection was the random forest classifier, which managed to obtain a final result of 84.04% accuracy, with 94.89% recall and 87.88% f1 score. This solution uses HRV data, facial expressions, PERCLOS and some personal characteristics of the user
id RCAP_e08abc41c8a79ff0ee2350ae2613ee97
oai_identifier_str oai:recipp.ipp.pt:10400.22/21710
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Um sistema multimodal para a deteção de stressA multimodal system for stress detectionStressMachine LearningClassificationHeart Rate VariabilityFacial ExpressionsEye BlinkPupil DiameterPERCLOSStress is the physiological or psychological response to internal or external factors, which can happen in short or long terms. Prolonged stress can be harmful since it affects the body, negatively, in several ways, thus contributing to mental and physical health problems. Although stress is not simple to properly identify, there are several studied approaches that solidify the existence of a correlation between stress and perceivable human features. In order to detect stress, there are several approaches that can be taken into consideration. However, this task is more difficult in uncontrolled environments and where non-invasive methods are required. Heart Rate Variability (HRV), facial expressions, eye blinks, pupil diameter and PERCLOS (percentage of eye closure) consist in non-invasive approaches, proved capable to accurately identify the mental stress present in people. For this project, the users’ physiological signals were collected by an external video-based application, in a non-invasive way. Moreover, data from a brief questionnaire was also used to complement the physiological data. After the proposed solution was implemented and tested, it was concluded that the best algorithm for stress detection was the random forest classifier, which managed to obtain a final result of 84.04% accuracy, with 94.89% recall and 87.88% f1 score. This solution uses HRV data, facial expressions, PERCLOS and some personal characteristics of the userO stress é a resposta fisiológica ou psicológica a fatores internos ou externos, o que pode acontecer a curto ou longo prazo. O stress prolongado pode ser prejudicial uma vez que afeta o corpo, negativamente, de várias formas, contribuindo assim para problemas de saúde mental e física. Embora o stress não seja simples de identificar corretamente, existem várias abordagens estudadas que solidificam a existência de uma correlação entre o stress e as características humanas percetíveis. De forma a detetar o stress, existem várias abordagens que podem ser tidas em consideração. No entanto, esta tarefa é mais difícil em ambientes não controlados e onde são necessários métodos não invasivos. A variabilidade da frequência cardíaca (HRV), expressões faciais, piscar de olhos e diâmetro da pupila e PERCLOS (fecho ocular percentual) consistem em abordagens não-invasivas, comprovadamente capazes de identificar o stress nas pessoas. Para este projeto, os dados fisiológicos dos utilizadores são recolhidos a partir de uma aplicação externa baseada em vídeo, de forma não invasiva. Além disso, serão também utilizados dados recolhidos a partir de um breve questionário para complementar os dados fisiológicos Após a implementação e teste da solução proposta, concluiu-se que o melhor algoritmo de deteção de stress foi o random forest classifier, que conseguiu obter um resultado final de 84,04% de precision, com 94,89% de recall e 87,88% de f1 score. Esta solução utiliza dados de HRV, expressões faciais, PERCLOS e certas características pessoais do utilizadorRodrigues, Maria de Fátima CoutinhoRepositório Científico do Instituto Politécnico do PortoCorreia, Hugo André Viana2023-01-20T09:31:34Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/21710TID:203112849enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:17:59Zoai:recipp.ipp.pt:10400.22/21710Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:41:44.662860Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Um sistema multimodal para a deteção de stress
A multimodal system for stress detection
title Um sistema multimodal para a deteção de stress
spellingShingle Um sistema multimodal para a deteção de stress
Correia, Hugo André Viana
Stress
Machine Learning
Classification
Heart Rate Variability
Facial Expressions
Eye Blink
Pupil Diameter
PERCLOS
title_short Um sistema multimodal para a deteção de stress
title_full Um sistema multimodal para a deteção de stress
title_fullStr Um sistema multimodal para a deteção de stress
title_full_unstemmed Um sistema multimodal para a deteção de stress
title_sort Um sistema multimodal para a deteção de stress
author Correia, Hugo André Viana
author_facet Correia, Hugo André Viana
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Maria de Fátima Coutinho
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Correia, Hugo André Viana
dc.subject.por.fl_str_mv Stress
Machine Learning
Classification
Heart Rate Variability
Facial Expressions
Eye Blink
Pupil Diameter
PERCLOS
topic Stress
Machine Learning
Classification
Heart Rate Variability
Facial Expressions
Eye Blink
Pupil Diameter
PERCLOS
description Stress is the physiological or psychological response to internal or external factors, which can happen in short or long terms. Prolonged stress can be harmful since it affects the body, negatively, in several ways, thus contributing to mental and physical health problems. Although stress is not simple to properly identify, there are several studied approaches that solidify the existence of a correlation between stress and perceivable human features. In order to detect stress, there are several approaches that can be taken into consideration. However, this task is more difficult in uncontrolled environments and where non-invasive methods are required. Heart Rate Variability (HRV), facial expressions, eye blinks, pupil diameter and PERCLOS (percentage of eye closure) consist in non-invasive approaches, proved capable to accurately identify the mental stress present in people. For this project, the users’ physiological signals were collected by an external video-based application, in a non-invasive way. Moreover, data from a brief questionnaire was also used to complement the physiological data. After the proposed solution was implemented and tested, it was concluded that the best algorithm for stress detection was the random forest classifier, which managed to obtain a final result of 84.04% accuracy, with 94.89% recall and 87.88% f1 score. This solution uses HRV data, facial expressions, PERCLOS and some personal characteristics of the user
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2023-01-20T09:31:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/21710
TID:203112849
url http://hdl.handle.net/10400.22/21710
identifier_str_mv TID:203112849
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131504609067008