A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statistic
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.57805/revstat.v21i3.357 |
Resumo: | The generalized Pareto distributions (GPDs) play an important role in the statistics of extremes. We point various problems with the likelihood-based inference for the index parameter α of the GPDs, and develop alternative testing strategies, which do not require parameter estimation. Our test statistic is the Greenwood statistic, which probability distribution is stochastically increasing with respect to α within the GPDs. We compare the performance of our test to a test with maximum-to-sum ratio test statistic Rn. New results on the properties of the Rn are also presented, as well as recommendations for calculating the p-values and illustrative data examples. |
id |
RCAP_e0c4df85089d03291070c16469e61b44 |
---|---|
oai_identifier_str |
oai:revstat:article/357 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statisticcoefficient of variationextremesgeneralized Pareto distributionheavy tailed distributionpower lawPeak-over-thresholdThe generalized Pareto distributions (GPDs) play an important role in the statistics of extremes. We point various problems with the likelihood-based inference for the index parameter α of the GPDs, and develop alternative testing strategies, which do not require parameter estimation. Our test statistic is the Greenwood statistic, which probability distribution is stochastically increasing with respect to α within the GPDs. We compare the performance of our test to a test with maximum-to-sum ratio test statistic Rn. New results on the properties of the Rn are also presented, as well as recommendations for calculating the p-values and illustrative data examples.Statistics Portugal2023-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttps://doi.org/10.57805/revstat.v21i3.357https://doi.org/10.57805/revstat.v21i3.357REVSTAT-Statistical Journal; Vol. 21 No. 3 (2023): REVSTAT-Statistical Journal; 367–388REVSTAT; Vol. 21 N.º 3 (2023): REVSTAT-Statistical Journal; 367–3882183-03711645-6726reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/357https://revstat.ine.pt/index.php/REVSTAT/article/view/357/651https://revstat.ine.pt/index.php/REVSTAT/article/view/357/540Copyright (c) 2022 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessArendarczyk , MarekJ. Kozubowski , TomaszK. Panorska , Anna2023-08-12T06:30:22Zoai:revstat:article/357Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:26:50.200330Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statistic |
title |
A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statistic |
spellingShingle |
A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statistic Arendarczyk , Marek coefficient of variation extremes generalized Pareto distribution heavy tailed distribution power law Peak-over-threshold |
title_short |
A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statistic |
title_full |
A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statistic |
title_fullStr |
A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statistic |
title_full_unstemmed |
A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statistic |
title_sort |
A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statistic |
author |
Arendarczyk , Marek |
author_facet |
Arendarczyk , Marek J. Kozubowski , Tomasz K. Panorska , Anna |
author_role |
author |
author2 |
J. Kozubowski , Tomasz K. Panorska , Anna |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Arendarczyk , Marek J. Kozubowski , Tomasz K. Panorska , Anna |
dc.subject.por.fl_str_mv |
coefficient of variation extremes generalized Pareto distribution heavy tailed distribution power law Peak-over-threshold |
topic |
coefficient of variation extremes generalized Pareto distribution heavy tailed distribution power law Peak-over-threshold |
description |
The generalized Pareto distributions (GPDs) play an important role in the statistics of extremes. We point various problems with the likelihood-based inference for the index parameter α of the GPDs, and develop alternative testing strategies, which do not require parameter estimation. Our test statistic is the Greenwood statistic, which probability distribution is stochastically increasing with respect to α within the GPDs. We compare the performance of our test to a test with maximum-to-sum ratio test statistic Rn. New results on the properties of the Rn are also presented, as well as recommendations for calculating the p-values and illustrative data examples. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.57805/revstat.v21i3.357 https://doi.org/10.57805/revstat.v21i3.357 |
url |
https://doi.org/10.57805/revstat.v21i3.357 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revstat.ine.pt/index.php/REVSTAT/article/view/357 https://revstat.ine.pt/index.php/REVSTAT/article/view/357/651 https://revstat.ine.pt/index.php/REVSTAT/article/view/357/540 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 REVSTAT-Statistical Journal info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 REVSTAT-Statistical Journal |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Statistics Portugal |
publisher.none.fl_str_mv |
Statistics Portugal |
dc.source.none.fl_str_mv |
REVSTAT-Statistical Journal; Vol. 21 No. 3 (2023): REVSTAT-Statistical Journal; 367–388 REVSTAT; Vol. 21 N.º 3 (2023): REVSTAT-Statistical Journal; 367–388 2183-0371 1645-6726 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133536416956416 |