Oxygen uptake kinetics and bioenergetics profile at maximal and supramaximal intensities in swimming
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/30082 |
Resumo: | The aim of this work was to investigate and describe the swimmers oxygen uptake kinetics (V̇O2K) and bioenergetic profiles at different maximal and supramaximal intensities in order to provide new insights about the impact that competitive and training efforts have on swimmers physiology. For that purpose, several physiological parameters were measured throughout the different tests performed by the swimmers before, during and after exercise, such as V̇O2, heart rate, blood lactate concentration and rate of perceived exertion (RPE). All tests were conducted using a breath-by-breath apparatus connected to a swimming snorkel for pulmonary gas sampling and an underwater visual pacer displayed at the bottom of the pool for velocity control. The V̇O2K parameters were calculated through mono or bi-exponential modelling and by a new growth rate method. For the analysis of the bioenergetic profiles we considered: the aerobic system determined as the time integral of the net V̇O2 during exercise; the anaerobic lactic system calculated by the net [La-] at the end of exercise; and the anaerobic alactic system determined by the analyses of the fast component of the V̇O2 recovery curve. Four main studies embody the fundamental part of this thesis. They were designed to: 1) characterize swimming competitive events; 2) test the tolerance to the maximal aerobic velocity (MAV) at continuous vs. interval training (IT) sets; 3) test two different work-intervals (medium and long) in IT sets performed at the MAV; and 4) test the impact of different intensities applied on similar IT sets, testing also the effects of short and medium work-intervals. For each study, swimmers first performed a discontinuous incremental test in order to access the second ventilatory threshold (VT₂), maximal oxygen uptake (Peak-V̇O2) and maximal aerobic velocity ( MAV). This allowed to set the reference markers for the application of the remaining tests that were performed at maximal and supramaximal intensities, varying according to intensity (constant vs. maximal trials) and total distance performed (continuous vs. intermittent). In study 1, three simulated swimming events (50, 100 and 200 meters maximal trials) showed a tendency, as the distance of the event increases and the exercise intensity decreases, of a slower V̇O2K response but higher oxidative responses, while the aerobic participation increased and the anaerobic decreased, presenting a cross-over in the 100 meters event. Study 2 showed that athletes could hold the MAV intensity for ~256 seconds, with less proficient swimmers getting higher times to exhaustion (TLim). Furthermore, performing this intensity intermittently (100 meters bouts with 15 seconds breaks) lead to significantly longer TLim and consequently swimmers spent a considerable longer time near the V̇O2 maximal values. Study 3 showed that, independently of performing medium or long work-intervals (100 vs. 200 meters bouts), the physiological impact on swimmers is similar and capable to tax the aerobic mechanism to its maximal values. When normalized for the same overall distance (first 800 meters) the RPE showed that swimmers could easily perform the shorter work-interval getting the same physiological benefits than with longer work-interval. Study 4 showed that, whilst training with short distance bouts (50-m), 5 to 10% of increase in the intensity could rise the oxidative rate ~6 to 13% higher, and improve ~20 to 46% the tolerance to swimming in the severe domain (i.e., above VT₂). In addition, the results recommend an increase of, at least, 5% of the intensity to an IT set performed with 50 meters bouts to match the results obtained with 100 meters bouts. Overall, the studies demonstrated that higher oxidative rates, amplitudes of the V̇O2K, MAV’s and aerobic and total anaerobic participations seemed to be associated with better swimming performances. At MAV, the IT sets seemed to bring more benefits for the aerobic capacity development than the continuous workout and increasing the intensity of a short work-interval IT set above MAV is advisable for a more taxing effect on the aerobic metabolism. When comparing work-intervals it seems that a significant improvement occurs from increasing the sets repetition from 50 to 100 meters bouts, however no further physiological benefits occur from the 100 to the 200 meters bouts. Our investigation confirms that the analysis of the V̇O2K parameters as well as profiling swimmers bioenergetics, especially in the intensities associated with training and competitive events, are important aspects for a true understanding of human sports performance. |
id |
RCAP_e26841878924665d992d3a7e56492417 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/30082 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Oxygen uptake kinetics and bioenergetics profile at maximal and supramaximal intensities in swimmingOxygen Uptake KineticsBioenergeticsSwimmingMaximal Aerobic VelocityInterval TrainingCinética do Consumo de OxigénioBioenergéticaVelocidade Aeróbia MáximaTreino IntervaladoNataçãoDomínio/Área Científica::Ciências Médicas::Outras Ciências MédicasThe aim of this work was to investigate and describe the swimmers oxygen uptake kinetics (V̇O2K) and bioenergetic profiles at different maximal and supramaximal intensities in order to provide new insights about the impact that competitive and training efforts have on swimmers physiology. For that purpose, several physiological parameters were measured throughout the different tests performed by the swimmers before, during and after exercise, such as V̇O2, heart rate, blood lactate concentration and rate of perceived exertion (RPE). All tests were conducted using a breath-by-breath apparatus connected to a swimming snorkel for pulmonary gas sampling and an underwater visual pacer displayed at the bottom of the pool for velocity control. The V̇O2K parameters were calculated through mono or bi-exponential modelling and by a new growth rate method. For the analysis of the bioenergetic profiles we considered: the aerobic system determined as the time integral of the net V̇O2 during exercise; the anaerobic lactic system calculated by the net [La-] at the end of exercise; and the anaerobic alactic system determined by the analyses of the fast component of the V̇O2 recovery curve. Four main studies embody the fundamental part of this thesis. They were designed to: 1) characterize swimming competitive events; 2) test the tolerance to the maximal aerobic velocity (MAV) at continuous vs. interval training (IT) sets; 3) test two different work-intervals (medium and long) in IT sets performed at the MAV; and 4) test the impact of different intensities applied on similar IT sets, testing also the effects of short and medium work-intervals. For each study, swimmers first performed a discontinuous incremental test in order to access the second ventilatory threshold (VT₂), maximal oxygen uptake (Peak-V̇O2) and maximal aerobic velocity ( MAV). This allowed to set the reference markers for the application of the remaining tests that were performed at maximal and supramaximal intensities, varying according to intensity (constant vs. maximal trials) and total distance performed (continuous vs. intermittent). In study 1, three simulated swimming events (50, 100 and 200 meters maximal trials) showed a tendency, as the distance of the event increases and the exercise intensity decreases, of a slower V̇O2K response but higher oxidative responses, while the aerobic participation increased and the anaerobic decreased, presenting a cross-over in the 100 meters event. Study 2 showed that athletes could hold the MAV intensity for ~256 seconds, with less proficient swimmers getting higher times to exhaustion (TLim). Furthermore, performing this intensity intermittently (100 meters bouts with 15 seconds breaks) lead to significantly longer TLim and consequently swimmers spent a considerable longer time near the V̇O2 maximal values. Study 3 showed that, independently of performing medium or long work-intervals (100 vs. 200 meters bouts), the physiological impact on swimmers is similar and capable to tax the aerobic mechanism to its maximal values. When normalized for the same overall distance (first 800 meters) the RPE showed that swimmers could easily perform the shorter work-interval getting the same physiological benefits than with longer work-interval. Study 4 showed that, whilst training with short distance bouts (50-m), 5 to 10% of increase in the intensity could rise the oxidative rate ~6 to 13% higher, and improve ~20 to 46% the tolerance to swimming in the severe domain (i.e., above VT₂). In addition, the results recommend an increase of, at least, 5% of the intensity to an IT set performed with 50 meters bouts to match the results obtained with 100 meters bouts. Overall, the studies demonstrated that higher oxidative rates, amplitudes of the V̇O2K, MAV’s and aerobic and total anaerobic participations seemed to be associated with better swimming performances. At MAV, the IT sets seemed to bring more benefits for the aerobic capacity development than the continuous workout and increasing the intensity of a short work-interval IT set above MAV is advisable for a more taxing effect on the aerobic metabolism. When comparing work-intervals it seems that a significant improvement occurs from increasing the sets repetition from 50 to 100 meters bouts, however no further physiological benefits occur from the 100 to the 200 meters bouts. Our investigation confirms that the analysis of the V̇O2K parameters as well as profiling swimmers bioenergetics, especially in the intensities associated with training and competitive events, are important aspects for a true understanding of human sports performance.A presente tese procurou investigar e descrever a cinética do consumo de oxigénio (V̇O2K) e o perfil bioenergético de nadadores em intensidades máximas e supramáximas, com o objetivo de aprofundar o conhecimento do impacto que esforços tipicamente desempenhados em competição e treino têm nas suas respostas fisiológicas. Para tal, vários parâmetros fisiológicos foram medidos ao longo dos diferentes testes realizados pelos nadadores antes, durante e após o exercício, tais como o V̇O2, frequência cardíaca, concentração de lactato sanguíneo e perceção subjetiva de esforço (RPE). Durante as sessões de testes foi sempre utilizado um analisador de gases acoplado ao atleta através de um snorkel para uma análise “breath-by-breath” dos gases expirados ao longo de todo o percurso de nado e um pacer subaquático foi utilizado para o controlo das intensidades. Os parâmetros da V̇O2K foram determinados através de modelos mono e bi-exponenciais tendo sido apresentado um novo modelo de análise através da taxa de crescimento do V̇O2. Para a análise do perfil bioenergético dos nadadores foram considerados: o sistema aeróbio, determinado pela integral da resposta do V̇O2 durante o exercício; o sistema anaeróbio láctico, determinado pela diferença da concentração de lactato pós exercício; e o sistema anaeróbio aláctico, calculado através da análise da componente rápida da curva de recuperação do V̇O2 pós exercício. Os quatro estudos principais que incorporam a parte fundamental desta tese foram desenhados de forma a: 1) caracterizar eventos competitivos de natação; 2) testar a tolerância à velocidade aeróbia máxima (MAV) em esforços contínuos e intervalados (IT); 3) testar duas tarefas de IT com diferentes intervalos de esforço (médios e longos) à MAV; e 4) testar o impacto que diferentes intensidades provocam em IT semelhantes, testando também o efeito de intervalos de esforços de curta e média duração. Os nadadores começaram por desempenhar um teste incremental descontínuo para a avaliação do segundo limiar ventilatório (VT₂), consumo máximo de oxigénio (Peak-V̇O2) e da MAV. Este teste permitiu definir os valores de referência para a aplicação e avaliação dos testes remanescentes, realizados a intensidades máximas e supramáximas, variando de acordo com a intensidade (constante vs. máxima) e distância total realizada (contínua vs. intermitente). No estudo 1, três eventos máximos simulados (50, 100 e 200 metros) mostraram uma tendência, à medida que a distância do evento aumenta e a intensidade do exercício diminui, de uma resposta mais lenta da V̇O2K, mas respostas oxidativas superiores, enquanto a contribuição aeróbia aumentou e a anaeróbia diminuiu, apresentando um cross-over no teste dos 100 metros. O estudo 2 mostrou uma tolerância à MAV (TLim) de ~ 256 segundos, com os nadadores com MAV mais lentos a obterem tempos superiores de TLim. Realizar esta intensidade intermitentemente (séries de 100 metros com intervalos de 15 segundos) levou a um TLim significativamente mais longo e, consequentemente, os nadadores passaram um tempo consideravelmente superior perto dos seus valores máximos de V̇O2, quando comparado com o teste contínuo. O estudo 3 mostrou que, independentemente da divisão de uma tarefa de IT em intervalos de esforços médios ou longos (repetições de 100 vs. 200 metros), o impacto fisiológico sobre os nadadores é semelhante e capaz de elevar o mecanismo aeróbio aos valores máximos. Quando normalizado para a mesma distância total (primeiros 800 metros) a RPE mostrou que os nadadores executam o IT com repetições mais curtas mais facilmente, obtendo os mesmos benefícios fisiológicos quando comparado com repetições mais longas. O estudo 4 mostrou que, ao treinar com repetições de curta duração (50 metros), 5 a 10% de aumento da intensidade poderá aumentar a taxa oxidativa em ~6 a 13%, e aumentar a tolerância ao esforço no domínio severo em ~ 20 a 46% (i.e., acima do VT₂). Os resultados recomendam também um aumento de, pelo menos, 5% da intensidade para se obterem respostas fisiológicas semelhantes àquelas obtidas em IT com repetições de 100 metros. No geral, os estudos demonstraram que maiores taxas oxidativas, amplitudes da V̇O2K, MAV e participações aeróbias e anaeróbias totais parecem estar associadas a melhores desempenhos desportivos. À MAV as tarefas de treino intervalado parecem trazer mais benefícios para o desenvolvimento da capacidade aeróbia do que o treino contínuo, e o aumento da intensidade acima da MAV, em IT com repetições curtas, é aconselhável para um efeito mais significativo sobre o metabolismo aeróbio. Em tarefas de IT, parece existir uma melhoria significativa nas respostas fisiológicas dos nadadores com o aumento das repetições de 50 para 100 metros, no entanto parece que não existem mais melhorias ao aumentar as repetições para 200 metros. A nossa investigação confirma a análise dos parâmetros V̇O2K, bem como a caracterização dos perfis bioenergéticos de nadadores, especialmente nas intensidades associadas ao treino e eventos competitivos, como aspetos importantes para uma verdadeira compreensão do desempenho desportivo humano.Alves, Francisco José Bessone FerreiraFilho, Dalton Müller PessôaRepositório da Universidade de LisboaAlmeida, T.2024-02-08T15:59:48Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.5/30082TID:101382030enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-11T01:31:42Zoai:www.repository.utl.pt:10400.5/30082Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:37:38.744127Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Oxygen uptake kinetics and bioenergetics profile at maximal and supramaximal intensities in swimming |
title |
Oxygen uptake kinetics and bioenergetics profile at maximal and supramaximal intensities in swimming |
spellingShingle |
Oxygen uptake kinetics and bioenergetics profile at maximal and supramaximal intensities in swimming Almeida, T. Oxygen Uptake Kinetics Bioenergetics Swimming Maximal Aerobic Velocity Interval Training Cinética do Consumo de Oxigénio Bioenergética Velocidade Aeróbia Máxima Treino Intervalado Natação Domínio/Área Científica::Ciências Médicas::Outras Ciências Médicas |
title_short |
Oxygen uptake kinetics and bioenergetics profile at maximal and supramaximal intensities in swimming |
title_full |
Oxygen uptake kinetics and bioenergetics profile at maximal and supramaximal intensities in swimming |
title_fullStr |
Oxygen uptake kinetics and bioenergetics profile at maximal and supramaximal intensities in swimming |
title_full_unstemmed |
Oxygen uptake kinetics and bioenergetics profile at maximal and supramaximal intensities in swimming |
title_sort |
Oxygen uptake kinetics and bioenergetics profile at maximal and supramaximal intensities in swimming |
author |
Almeida, T. |
author_facet |
Almeida, T. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Alves, Francisco José Bessone Ferreira Filho, Dalton Müller Pessôa Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Almeida, T. |
dc.subject.por.fl_str_mv |
Oxygen Uptake Kinetics Bioenergetics Swimming Maximal Aerobic Velocity Interval Training Cinética do Consumo de Oxigénio Bioenergética Velocidade Aeróbia Máxima Treino Intervalado Natação Domínio/Área Científica::Ciências Médicas::Outras Ciências Médicas |
topic |
Oxygen Uptake Kinetics Bioenergetics Swimming Maximal Aerobic Velocity Interval Training Cinética do Consumo de Oxigénio Bioenergética Velocidade Aeróbia Máxima Treino Intervalado Natação Domínio/Área Científica::Ciências Médicas::Outras Ciências Médicas |
description |
The aim of this work was to investigate and describe the swimmers oxygen uptake kinetics (V̇O2K) and bioenergetic profiles at different maximal and supramaximal intensities in order to provide new insights about the impact that competitive and training efforts have on swimmers physiology. For that purpose, several physiological parameters were measured throughout the different tests performed by the swimmers before, during and after exercise, such as V̇O2, heart rate, blood lactate concentration and rate of perceived exertion (RPE). All tests were conducted using a breath-by-breath apparatus connected to a swimming snorkel for pulmonary gas sampling and an underwater visual pacer displayed at the bottom of the pool for velocity control. The V̇O2K parameters were calculated through mono or bi-exponential modelling and by a new growth rate method. For the analysis of the bioenergetic profiles we considered: the aerobic system determined as the time integral of the net V̇O2 during exercise; the anaerobic lactic system calculated by the net [La-] at the end of exercise; and the anaerobic alactic system determined by the analyses of the fast component of the V̇O2 recovery curve. Four main studies embody the fundamental part of this thesis. They were designed to: 1) characterize swimming competitive events; 2) test the tolerance to the maximal aerobic velocity (MAV) at continuous vs. interval training (IT) sets; 3) test two different work-intervals (medium and long) in IT sets performed at the MAV; and 4) test the impact of different intensities applied on similar IT sets, testing also the effects of short and medium work-intervals. For each study, swimmers first performed a discontinuous incremental test in order to access the second ventilatory threshold (VT₂), maximal oxygen uptake (Peak-V̇O2) and maximal aerobic velocity ( MAV). This allowed to set the reference markers for the application of the remaining tests that were performed at maximal and supramaximal intensities, varying according to intensity (constant vs. maximal trials) and total distance performed (continuous vs. intermittent). In study 1, three simulated swimming events (50, 100 and 200 meters maximal trials) showed a tendency, as the distance of the event increases and the exercise intensity decreases, of a slower V̇O2K response but higher oxidative responses, while the aerobic participation increased and the anaerobic decreased, presenting a cross-over in the 100 meters event. Study 2 showed that athletes could hold the MAV intensity for ~256 seconds, with less proficient swimmers getting higher times to exhaustion (TLim). Furthermore, performing this intensity intermittently (100 meters bouts with 15 seconds breaks) lead to significantly longer TLim and consequently swimmers spent a considerable longer time near the V̇O2 maximal values. Study 3 showed that, independently of performing medium or long work-intervals (100 vs. 200 meters bouts), the physiological impact on swimmers is similar and capable to tax the aerobic mechanism to its maximal values. When normalized for the same overall distance (first 800 meters) the RPE showed that swimmers could easily perform the shorter work-interval getting the same physiological benefits than with longer work-interval. Study 4 showed that, whilst training with short distance bouts (50-m), 5 to 10% of increase in the intensity could rise the oxidative rate ~6 to 13% higher, and improve ~20 to 46% the tolerance to swimming in the severe domain (i.e., above VT₂). In addition, the results recommend an increase of, at least, 5% of the intensity to an IT set performed with 50 meters bouts to match the results obtained with 100 meters bouts. Overall, the studies demonstrated that higher oxidative rates, amplitudes of the V̇O2K, MAV’s and aerobic and total anaerobic participations seemed to be associated with better swimming performances. At MAV, the IT sets seemed to bring more benefits for the aerobic capacity development than the continuous workout and increasing the intensity of a short work-interval IT set above MAV is advisable for a more taxing effect on the aerobic metabolism. When comparing work-intervals it seems that a significant improvement occurs from increasing the sets repetition from 50 to 100 meters bouts, however no further physiological benefits occur from the 100 to the 200 meters bouts. Our investigation confirms that the analysis of the V̇O2K parameters as well as profiling swimmers bioenergetics, especially in the intensities associated with training and competitive events, are important aspects for a true understanding of human sports performance. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z 2024-02-08T15:59:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/30082 TID:101382030 |
url |
http://hdl.handle.net/10400.5/30082 |
identifier_str_mv |
TID:101382030 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817550745847726080 |