Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling

Detalhes bibliográficos
Autor(a) principal: Flechard, Chris
Data de Publicação: 2020
Outros Autores: Lobo-do-Vale, Raquel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/20292
Resumo: The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC=dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3 leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from 70 to 826 gCm2 yr1 at total wetCdry inorganic Nr deposition rates (Ndep) of 0.3 to 4.3 gNm2 yr1 and from 4 to 361 g Cm2 yr1 at Ndep rates of 0.1 to 3.1 gNm2 yr1 in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep where Nr leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3 were on average 27%(range 6 %–54 %) of Ndep at sites with Ndep < 1 gNm2 yr1 versus 65% (range 35 %–85 %) for Ndep > 3 gNm2 yr1. Such large levels of Nr loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr deposition up to 2–2.5 gNm2 yr1, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP = GPP ratio). At elevated Ndep levels (> 2.5 gNm2 yr1), where inorganic inorganic Nr losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep levels was partly the result of geographical cross-correlations between Ndep and climate, indicating that the actual mean dC=dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep
id RCAP_e2f9f86d592d2b1e68721e8584b4a814
oai_identifier_str oai:www.repository.utl.pt:10400.5/20292
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modellingcarbon-nitrogen interactionsforestsgreenhouse gasesecosystemEuropeThe impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC=dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3 leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from 70 to 826 gCm2 yr1 at total wetCdry inorganic Nr deposition rates (Ndep) of 0.3 to 4.3 gNm2 yr1 and from 4 to 361 g Cm2 yr1 at Ndep rates of 0.1 to 3.1 gNm2 yr1 in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep where Nr leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3 were on average 27%(range 6 %–54 %) of Ndep at sites with Ndep < 1 gNm2 yr1 versus 65% (range 35 %–85 %) for Ndep > 3 gNm2 yr1. Such large levels of Nr loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr deposition up to 2–2.5 gNm2 yr1, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP = GPP ratio). At elevated Ndep levels (> 2.5 gNm2 yr1), where inorganic inorganic Nr losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep levels was partly the result of geographical cross-correlations between Ndep and climate, indicating that the actual mean dC=dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. NdepEuropean Geosciences UnionRepositório da Universidade de LisboaFlechard, ChrisLobo-do-Vale, Raquel2020-09-15T09:08:30Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/20292engBiogeosciences, 17, 1583–1620, 2020https://doi.org/10.5194/bg-17-1583-2020info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:49:44Zoai:www.repository.utl.pt:10400.5/20292Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:05:04.163169Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
title Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
spellingShingle Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
Flechard, Chris
carbon-nitrogen interactions
forests
greenhouse gases
ecosystem
Europe
title_short Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
title_full Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
title_fullStr Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
title_full_unstemmed Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
title_sort Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
author Flechard, Chris
author_facet Flechard, Chris
Lobo-do-Vale, Raquel
author_role author
author2 Lobo-do-Vale, Raquel
author2_role author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Flechard, Chris
Lobo-do-Vale, Raquel
dc.subject.por.fl_str_mv carbon-nitrogen interactions
forests
greenhouse gases
ecosystem
Europe
topic carbon-nitrogen interactions
forests
greenhouse gases
ecosystem
Europe
description The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC=dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3 leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from 70 to 826 gCm2 yr1 at total wetCdry inorganic Nr deposition rates (Ndep) of 0.3 to 4.3 gNm2 yr1 and from 4 to 361 g Cm2 yr1 at Ndep rates of 0.1 to 3.1 gNm2 yr1 in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep where Nr leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3 were on average 27%(range 6 %–54 %) of Ndep at sites with Ndep < 1 gNm2 yr1 versus 65% (range 35 %–85 %) for Ndep > 3 gNm2 yr1. Such large levels of Nr loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr deposition up to 2–2.5 gNm2 yr1, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP = GPP ratio). At elevated Ndep levels (> 2.5 gNm2 yr1), where inorganic inorganic Nr losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep levels was partly the result of geographical cross-correlations between Ndep and climate, indicating that the actual mean dC=dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep
publishDate 2020
dc.date.none.fl_str_mv 2020-09-15T09:08:30Z
2020
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/20292
url http://hdl.handle.net/10400.5/20292
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Biogeosciences, 17, 1583–1620, 2020
https://doi.org/10.5194/bg-17-1583-2020
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv European Geosciences Union
publisher.none.fl_str_mv European Geosciences Union
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131143156531200