Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.26/27953 |
Resumo: | This paper presents a comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates. A multiphase Eulerian-Eulerian 2-D mathematical model was implemented, coupled with in-house user-defined functions (UDF) built to enhance hydrodynamics and heat transfer phenomena. The model validation was attained by comparison to experimental data gathered from both reactors. A grid refinement study was carried out for both geometries to achieve an appropriate computational domain. Hydrodynamics was deeply studied for both reactors concerning the scale-up effect. Mixing and segregation phenomena, solid particle distribution and biomass velocity were matters of great concern. Results showed that UDF implementation successfully minimized deviations and increased the model’s predictability. The largest deviations measured between experimental and numerical results for syngas composition were of about 20%. Solids mixing and segregation was found to be directly affected by the particles size, density, and superficial gas velocity, with the larger reactor revealing improved mixing ability. Improved mixing occurred for smaller particles size ratio (dbiomass ¼ 3 mm), smaller particles density ratio (rbiomass ¼ 950 kg/m3), and higher dimensionless superficial gas velocities (U0=Umf¼3.5). The larger unit showed an increase in near-wall velocity, lateral dispersion, and bubble size. As for the smaller reactor, higher velocities were obtained at the center region due to a more pronounced wall boundary layer. Similarities were found between the two reactors regarding the bubble distribution, dimensionless average bed pressure drop and biomass velocity vector profiles when dimensionless parameters were employed. |
id |
RCAP_e33c053d87087bd6d92039c284814714 |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/27953 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substratesHydrodynamicsScale-upPilot-scale bubbling fluidized bed gasifierBiomass gasificationMixing and segregation indexANSYS FLUENTThis paper presents a comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates. A multiphase Eulerian-Eulerian 2-D mathematical model was implemented, coupled with in-house user-defined functions (UDF) built to enhance hydrodynamics and heat transfer phenomena. The model validation was attained by comparison to experimental data gathered from both reactors. A grid refinement study was carried out for both geometries to achieve an appropriate computational domain. Hydrodynamics was deeply studied for both reactors concerning the scale-up effect. Mixing and segregation phenomena, solid particle distribution and biomass velocity were matters of great concern. Results showed that UDF implementation successfully minimized deviations and increased the model’s predictability. The largest deviations measured between experimental and numerical results for syngas composition were of about 20%. Solids mixing and segregation was found to be directly affected by the particles size, density, and superficial gas velocity, with the larger reactor revealing improved mixing ability. Improved mixing occurred for smaller particles size ratio (dbiomass ¼ 3 mm), smaller particles density ratio (rbiomass ¼ 950 kg/m3), and higher dimensionless superficial gas velocities (U0=Umf¼3.5). The larger unit showed an increase in near-wall velocity, lateral dispersion, and bubble size. As for the smaller reactor, higher velocities were obtained at the center region due to a more pronounced wall boundary layer. Similarities were found between the two reactors regarding the bubble distribution, dimensionless average bed pressure drop and biomass velocity vector profiles when dimensionless parameters were employed.POCI-01-0145-FEDER-007638IF/01772/2014Repositório ComumCardoso, JoãoSilva, ValterEusébio, DanielaBrito, PauloHall, M.J.Tarelho, Luís2019-02-22T14:58:22Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/27953enghttps://doi.org/10.1016/j.energy.2018.03.090metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T11:32:05Zoai:comum.rcaap.pt:10400.26/27953Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:15:55.010651Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates |
title |
Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates |
spellingShingle |
Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates Cardoso, João Hydrodynamics Scale-up Pilot-scale bubbling fluidized bed gasifier Biomass gasification Mixing and segregation index ANSYS FLUENT |
title_short |
Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates |
title_full |
Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates |
title_fullStr |
Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates |
title_full_unstemmed |
Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates |
title_sort |
Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates |
author |
Cardoso, João |
author_facet |
Cardoso, João Silva, Valter Eusébio, Daniela Brito, Paulo Hall, M.J. Tarelho, Luís |
author_role |
author |
author2 |
Silva, Valter Eusébio, Daniela Brito, Paulo Hall, M.J. Tarelho, Luís |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Comum |
dc.contributor.author.fl_str_mv |
Cardoso, João Silva, Valter Eusébio, Daniela Brito, Paulo Hall, M.J. Tarelho, Luís |
dc.subject.por.fl_str_mv |
Hydrodynamics Scale-up Pilot-scale bubbling fluidized bed gasifier Biomass gasification Mixing and segregation index ANSYS FLUENT |
topic |
Hydrodynamics Scale-up Pilot-scale bubbling fluidized bed gasifier Biomass gasification Mixing and segregation index ANSYS FLUENT |
description |
This paper presents a comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates. A multiphase Eulerian-Eulerian 2-D mathematical model was implemented, coupled with in-house user-defined functions (UDF) built to enhance hydrodynamics and heat transfer phenomena. The model validation was attained by comparison to experimental data gathered from both reactors. A grid refinement study was carried out for both geometries to achieve an appropriate computational domain. Hydrodynamics was deeply studied for both reactors concerning the scale-up effect. Mixing and segregation phenomena, solid particle distribution and biomass velocity were matters of great concern. Results showed that UDF implementation successfully minimized deviations and increased the model’s predictability. The largest deviations measured between experimental and numerical results for syngas composition were of about 20%. Solids mixing and segregation was found to be directly affected by the particles size, density, and superficial gas velocity, with the larger reactor revealing improved mixing ability. Improved mixing occurred for smaller particles size ratio (dbiomass ¼ 3 mm), smaller particles density ratio (rbiomass ¼ 950 kg/m3), and higher dimensionless superficial gas velocities (U0=Umf¼3.5). The larger unit showed an increase in near-wall velocity, lateral dispersion, and bubble size. As for the smaller reactor, higher velocities were obtained at the center region due to a more pronounced wall boundary layer. Similarities were found between the two reactors regarding the bubble distribution, dimensionless average bed pressure drop and biomass velocity vector profiles when dimensionless parameters were employed. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z 2019-02-22T14:58:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/27953 |
url |
http://hdl.handle.net/10400.26/27953 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://doi.org/10.1016/j.energy.2018.03.090 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817553480587411456 |