Reconstructing missing data in State Estimation with autoencoders

Detalhes bibliográficos
Autor(a) principal: Cristiano Moreira
Data de Publicação: 2012
Outros Autores: Jakov Opara, Hrvoje Keko, Jorge Correia Pereira, Vladimiro Miranda
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/2339
Resumo: This paper presents the proof of concept for a new solution to the problem of recomposing missing information at the SCADA of EMS/DMS (Energy/Distribution Management Systems), through the use of off-line trained autoencoders. These are neural networks with a special architecture, which allows them to store knowledge about a system in a non-linear manifold characterized by their weights. Suitable algorithms may then recompose missing inputs (measurements). The paper shows that, trained with adequate information, autoencoders perform well in recomposing missing voltage and power values, and focuses on the particularly important application of inferring the topology of the network when information about switch status is absent. Examples with the IEEE RTS 24 bus network are presented to illustrate the concept and technique.
id RCAP_e36cf7973a3ca3f26d781325ee012513
oai_identifier_str oai:repositorio.inesctec.pt:123456789/2339
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Reconstructing missing data in State Estimation with autoencodersThis paper presents the proof of concept for a new solution to the problem of recomposing missing information at the SCADA of EMS/DMS (Energy/Distribution Management Systems), through the use of off-line trained autoencoders. These are neural networks with a special architecture, which allows them to store knowledge about a system in a non-linear manifold characterized by their weights. Suitable algorithms may then recompose missing inputs (measurements). The paper shows that, trained with adequate information, autoencoders perform well in recomposing missing voltage and power values, and focuses on the particularly important application of inferring the topology of the network when information about switch status is absent. Examples with the IEEE RTS 24 bus network are presented to illustrate the concept and technique.2017-11-16T13:31:46Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/2339engCristiano MoreiraJakov OparaHrvoje KekoJorge Correia PereiraVladimiro Mirandainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-10-12T02:19:54Zoai:repositorio.inesctec.pt:123456789/2339Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-10-12T02:19:54Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Reconstructing missing data in State Estimation with autoencoders
title Reconstructing missing data in State Estimation with autoencoders
spellingShingle Reconstructing missing data in State Estimation with autoencoders
Cristiano Moreira
title_short Reconstructing missing data in State Estimation with autoencoders
title_full Reconstructing missing data in State Estimation with autoencoders
title_fullStr Reconstructing missing data in State Estimation with autoencoders
title_full_unstemmed Reconstructing missing data in State Estimation with autoencoders
title_sort Reconstructing missing data in State Estimation with autoencoders
author Cristiano Moreira
author_facet Cristiano Moreira
Jakov Opara
Hrvoje Keko
Jorge Correia Pereira
Vladimiro Miranda
author_role author
author2 Jakov Opara
Hrvoje Keko
Jorge Correia Pereira
Vladimiro Miranda
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Cristiano Moreira
Jakov Opara
Hrvoje Keko
Jorge Correia Pereira
Vladimiro Miranda
description This paper presents the proof of concept for a new solution to the problem of recomposing missing information at the SCADA of EMS/DMS (Energy/Distribution Management Systems), through the use of off-line trained autoencoders. These are neural networks with a special architecture, which allows them to store knowledge about a system in a non-linear manifold characterized by their weights. Suitable algorithms may then recompose missing inputs (measurements). The paper shows that, trained with adequate information, autoencoders perform well in recomposing missing voltage and power values, and focuses on the particularly important application of inferring the topology of the network when information about switch status is absent. Examples with the IEEE RTS 24 bus network are presented to illustrate the concept and technique.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01T00:00:00Z
2012
2017-11-16T13:31:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/2339
url http://repositorio.inesctec.pt/handle/123456789/2339
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817548580554014720