Reconstructing missing data in State Estimation with autoencoders
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/2339 |
Resumo: | This paper presents the proof of concept for a new solution to the problem of recomposing missing information at the SCADA of EMS/DMS (Energy/Distribution Management Systems), through the use of off-line trained autoencoders. These are neural networks with a special architecture, which allows them to store knowledge about a system in a non-linear manifold characterized by their weights. Suitable algorithms may then recompose missing inputs (measurements). The paper shows that, trained with adequate information, autoencoders perform well in recomposing missing voltage and power values, and focuses on the particularly important application of inferring the topology of the network when information about switch status is absent. Examples with the IEEE RTS 24 bus network are presented to illustrate the concept and technique. |
id |
RCAP_e36cf7973a3ca3f26d781325ee012513 |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/2339 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Reconstructing missing data in State Estimation with autoencodersThis paper presents the proof of concept for a new solution to the problem of recomposing missing information at the SCADA of EMS/DMS (Energy/Distribution Management Systems), through the use of off-line trained autoencoders. These are neural networks with a special architecture, which allows them to store knowledge about a system in a non-linear manifold characterized by their weights. Suitable algorithms may then recompose missing inputs (measurements). The paper shows that, trained with adequate information, autoencoders perform well in recomposing missing voltage and power values, and focuses on the particularly important application of inferring the topology of the network when information about switch status is absent. Examples with the IEEE RTS 24 bus network are presented to illustrate the concept and technique.2017-11-16T13:31:46Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/2339engCristiano MoreiraJakov OparaHrvoje KekoJorge Correia PereiraVladimiro Mirandainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-10-12T02:19:54Zoai:repositorio.inesctec.pt:123456789/2339Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-10-12T02:19:54Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Reconstructing missing data in State Estimation with autoencoders |
title |
Reconstructing missing data in State Estimation with autoencoders |
spellingShingle |
Reconstructing missing data in State Estimation with autoencoders Cristiano Moreira |
title_short |
Reconstructing missing data in State Estimation with autoencoders |
title_full |
Reconstructing missing data in State Estimation with autoencoders |
title_fullStr |
Reconstructing missing data in State Estimation with autoencoders |
title_full_unstemmed |
Reconstructing missing data in State Estimation with autoencoders |
title_sort |
Reconstructing missing data in State Estimation with autoencoders |
author |
Cristiano Moreira |
author_facet |
Cristiano Moreira Jakov Opara Hrvoje Keko Jorge Correia Pereira Vladimiro Miranda |
author_role |
author |
author2 |
Jakov Opara Hrvoje Keko Jorge Correia Pereira Vladimiro Miranda |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Cristiano Moreira Jakov Opara Hrvoje Keko Jorge Correia Pereira Vladimiro Miranda |
description |
This paper presents the proof of concept for a new solution to the problem of recomposing missing information at the SCADA of EMS/DMS (Energy/Distribution Management Systems), through the use of off-line trained autoencoders. These are neural networks with a special architecture, which allows them to store knowledge about a system in a non-linear manifold characterized by their weights. Suitable algorithms may then recompose missing inputs (measurements). The paper shows that, trained with adequate information, autoencoders perform well in recomposing missing voltage and power values, and focuses on the particularly important application of inferring the topology of the network when information about switch status is absent. Examples with the IEEE RTS 24 bus network are presented to illustrate the concept and technique. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01-01T00:00:00Z 2012 2017-11-16T13:31:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/2339 |
url |
http://repositorio.inesctec.pt/handle/123456789/2339 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817548580554014720 |