The effects of piezoelectric polymers on neuronal differentiation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/11630 |
Resumo: | O crescimento de neurites é crucial para o desenvolvimento neuronal, bem como para a plasticidade e reparação na fase adulta. Após uma lesão neuronal, o sucesso da reparação é determinando pelas propriedades plásticas constitutivas dos neurónios afetados e pelo seu potencial de regeneração, que é influenciado por sinais externos físicos (ex.: cicatriz glial) e químicos (ex.: moléculas inibitórias). Recentemente, o desenvolvimento de materiais à nano-escala, que interagem com os sistemas biológicos a nível molecular, prometem revolucionar o tratamento das lesões do Sistema Nervoso Central e Periférico. Os scaffolds de nanomateriais podem suportar e promover o crescimento de neurites e consequentemente, intervir nas complexas interações moleculares que ocorrem a após o dano neuronal, entre as células e o seu ambiente extracelular. Vários estudos têm demonstrado que os materiais piezoeléctricos, que geram carga elétrica em resposta ao stress mecânico, podem ser usados para a preparação de scaffolds eletricamente carregados que devem influenciar o comportamento celular. Este estudo centrou-se nos efeitos dos materiais baseados em PLLA (ácido poli (L – láctico)) sob a forma de filmes, nanofibras orientadas aleatória e alinhadamente, e da sua polarização, na diferenciação neuronal. A linha celular de neuroblastoma (SH-SY5Y) foi utilizada para avaliar o efeito dos materiais-baseados em PLLA na adesão, viabilidade, morfologia celular, bem como na diferenciação tipo-neuronal. A análise proteómica baseada em espectrometria de massa das células cultivadas em nanofibras de PLLA foi também efetuada. Os neurónios corticais embriónicos foram seguidamente utilizados para avaliar os efeitos das nanofibras de PLLA alinhadas e da sua polarização no crescimento de neurites. Nesta análise, descobrimos que os materiais de PLLA parecem inibir parcialmente a proliferação celular, enquanto promovem a diferenciação, alterando os níveis das proteínas que intervêm nestes processos. Ocorrem alterações significativas do citoesqueleto, particularmente ao nível do citoesqueleto de actina, que não induzem mas parecem potenciar o crescimento de neurites sob exposição a um sinal extracelular como o ácido retinóico. Este efeito parece ser particularmente evidente para as nanofibras de PLLA alinhadas, que induzem efeitos intermédios na restruturação do citoesqueleto. Em geral, a polarização das amostras de PLLA tem efeitos benéficos na proliferação celular e potencia o crescimento de neurites, particularmente nos neurónios. Acreditamos que as nanofibras de PLLA alinhadas serão um bom scaffold para regeneração neuronal, uma vez que mimetiza o ambiente mecânico natural das células. Contudo, futuras experiências in vitro e in vivo são necessárias para comprovar a eficácia deste potencial scaffold. |
id |
RCAP_e3730f6e427c66d2875a16681eb308e1 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/11630 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The effects of piezoelectric polymers on neuronal differentiationBiomedicinaNeuróniosPolímeros piezoeléctricosO crescimento de neurites é crucial para o desenvolvimento neuronal, bem como para a plasticidade e reparação na fase adulta. Após uma lesão neuronal, o sucesso da reparação é determinando pelas propriedades plásticas constitutivas dos neurónios afetados e pelo seu potencial de regeneração, que é influenciado por sinais externos físicos (ex.: cicatriz glial) e químicos (ex.: moléculas inibitórias). Recentemente, o desenvolvimento de materiais à nano-escala, que interagem com os sistemas biológicos a nível molecular, prometem revolucionar o tratamento das lesões do Sistema Nervoso Central e Periférico. Os scaffolds de nanomateriais podem suportar e promover o crescimento de neurites e consequentemente, intervir nas complexas interações moleculares que ocorrem a após o dano neuronal, entre as células e o seu ambiente extracelular. Vários estudos têm demonstrado que os materiais piezoeléctricos, que geram carga elétrica em resposta ao stress mecânico, podem ser usados para a preparação de scaffolds eletricamente carregados que devem influenciar o comportamento celular. Este estudo centrou-se nos efeitos dos materiais baseados em PLLA (ácido poli (L – láctico)) sob a forma de filmes, nanofibras orientadas aleatória e alinhadamente, e da sua polarização, na diferenciação neuronal. A linha celular de neuroblastoma (SH-SY5Y) foi utilizada para avaliar o efeito dos materiais-baseados em PLLA na adesão, viabilidade, morfologia celular, bem como na diferenciação tipo-neuronal. A análise proteómica baseada em espectrometria de massa das células cultivadas em nanofibras de PLLA foi também efetuada. Os neurónios corticais embriónicos foram seguidamente utilizados para avaliar os efeitos das nanofibras de PLLA alinhadas e da sua polarização no crescimento de neurites. Nesta análise, descobrimos que os materiais de PLLA parecem inibir parcialmente a proliferação celular, enquanto promovem a diferenciação, alterando os níveis das proteínas que intervêm nestes processos. Ocorrem alterações significativas do citoesqueleto, particularmente ao nível do citoesqueleto de actina, que não induzem mas parecem potenciar o crescimento de neurites sob exposição a um sinal extracelular como o ácido retinóico. Este efeito parece ser particularmente evidente para as nanofibras de PLLA alinhadas, que induzem efeitos intermédios na restruturação do citoesqueleto. Em geral, a polarização das amostras de PLLA tem efeitos benéficos na proliferação celular e potencia o crescimento de neurites, particularmente nos neurónios. Acreditamos que as nanofibras de PLLA alinhadas serão um bom scaffold para regeneração neuronal, uma vez que mimetiza o ambiente mecânico natural das células. Contudo, futuras experiências in vitro e in vivo são necessárias para comprovar a eficácia deste potencial scaffold.Neuritic growth is crucial for neural development, as well as for adaptation and repair in adulthood. Upon neuronal injury, the successful neuritic regrowth is determined by the constitutive plastic properties of neurons and by their regenerative potential, which is influenced by physical (e.g. glial scar) and chemical (e.g. inhibitory molecules) extrinsic cues. Recently, the development of nanometer-scale materials, which can interact with biological systems at a molecular level, provide hope to revolutionize the treatment of central and peripheral nervous system injuries. Nanomaterial scaffolds can support and promote neuritic outgrowth and consequently, take part in the complex molecular interactions between cells and their extracellular environment after neuronal injury. Several studies have shown that piezoelectric materials, which generate electrical charge in response to mechanical strain, may be used to prepare bioactive electrically charged scaffolds that may influence cell behavior. This study focused on the effects of PLLA (poly-L-lactic acid) – based materials in the form of films, random and aligned nanofibers, and of their polarization, on neuronal-like and neuronal differentiation. The neuroblastoma SH-SY5Y cell line was used to evaluate the effect of PLLA – based materials on cellular adhesion, viability, morphology and neuron-like differentiation. Mass spectrometry-based proteomic analysis of cells grown on PLLA nanofibers was also conducted. Primary embryonic cortical neurons were further used to evaluate the effect of PLLA aligned nanofibers and their polarization on neuritic outgrowth. In this analysis, we found that PLLA materials seem to partially inhibit cell proliferation, while promoting neuronal differentiation, altering the levels of proteins that intervene in these processes. Dramatic cytoskeleton remodeling occurs, particularly at the actin cytoskeleton level, which does not induce but may potentiate neuritic outgrowth upon exposure to an extracellular cue, such as Retinoic Acid. This effect seems to be particularly evident for PLLA aligned nanofibers, which induce intermediate effects in the cytoskeleton remodeling. In general, polarization of the PLLA polymers has beneficial effects on cell proliferation and potentiates the neuritic outgrowth, particularly in neurons. We believe that polarized PLLA aligned nanofibers would be a good scaffold for neuronal regeneration, since it mimics the natural mechanical cell environment and enhances neuritic outgrowth. However, further in vitro and in vivo investigations are required to prove the efficacy of this potential scaffold.Universidade de Aveiro2018-07-20T14:00:43Z2013-07-17T00:00:00Z2013-07-172015-07-11T12:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/11630TID:201563886engMarote, Ana Maria Franco Aveiroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:21:00Zoai:ria.ua.pt:10773/11630Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:48:00.444801Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The effects of piezoelectric polymers on neuronal differentiation |
title |
The effects of piezoelectric polymers on neuronal differentiation |
spellingShingle |
The effects of piezoelectric polymers on neuronal differentiation Marote, Ana Maria Franco Aveiro Biomedicina Neurónios Polímeros piezoeléctricos |
title_short |
The effects of piezoelectric polymers on neuronal differentiation |
title_full |
The effects of piezoelectric polymers on neuronal differentiation |
title_fullStr |
The effects of piezoelectric polymers on neuronal differentiation |
title_full_unstemmed |
The effects of piezoelectric polymers on neuronal differentiation |
title_sort |
The effects of piezoelectric polymers on neuronal differentiation |
author |
Marote, Ana Maria Franco Aveiro |
author_facet |
Marote, Ana Maria Franco Aveiro |
author_role |
author |
dc.contributor.author.fl_str_mv |
Marote, Ana Maria Franco Aveiro |
dc.subject.por.fl_str_mv |
Biomedicina Neurónios Polímeros piezoeléctricos |
topic |
Biomedicina Neurónios Polímeros piezoeléctricos |
description |
O crescimento de neurites é crucial para o desenvolvimento neuronal, bem como para a plasticidade e reparação na fase adulta. Após uma lesão neuronal, o sucesso da reparação é determinando pelas propriedades plásticas constitutivas dos neurónios afetados e pelo seu potencial de regeneração, que é influenciado por sinais externos físicos (ex.: cicatriz glial) e químicos (ex.: moléculas inibitórias). Recentemente, o desenvolvimento de materiais à nano-escala, que interagem com os sistemas biológicos a nível molecular, prometem revolucionar o tratamento das lesões do Sistema Nervoso Central e Periférico. Os scaffolds de nanomateriais podem suportar e promover o crescimento de neurites e consequentemente, intervir nas complexas interações moleculares que ocorrem a após o dano neuronal, entre as células e o seu ambiente extracelular. Vários estudos têm demonstrado que os materiais piezoeléctricos, que geram carga elétrica em resposta ao stress mecânico, podem ser usados para a preparação de scaffolds eletricamente carregados que devem influenciar o comportamento celular. Este estudo centrou-se nos efeitos dos materiais baseados em PLLA (ácido poli (L – láctico)) sob a forma de filmes, nanofibras orientadas aleatória e alinhadamente, e da sua polarização, na diferenciação neuronal. A linha celular de neuroblastoma (SH-SY5Y) foi utilizada para avaliar o efeito dos materiais-baseados em PLLA na adesão, viabilidade, morfologia celular, bem como na diferenciação tipo-neuronal. A análise proteómica baseada em espectrometria de massa das células cultivadas em nanofibras de PLLA foi também efetuada. Os neurónios corticais embriónicos foram seguidamente utilizados para avaliar os efeitos das nanofibras de PLLA alinhadas e da sua polarização no crescimento de neurites. Nesta análise, descobrimos que os materiais de PLLA parecem inibir parcialmente a proliferação celular, enquanto promovem a diferenciação, alterando os níveis das proteínas que intervêm nestes processos. Ocorrem alterações significativas do citoesqueleto, particularmente ao nível do citoesqueleto de actina, que não induzem mas parecem potenciar o crescimento de neurites sob exposição a um sinal extracelular como o ácido retinóico. Este efeito parece ser particularmente evidente para as nanofibras de PLLA alinhadas, que induzem efeitos intermédios na restruturação do citoesqueleto. Em geral, a polarização das amostras de PLLA tem efeitos benéficos na proliferação celular e potencia o crescimento de neurites, particularmente nos neurónios. Acreditamos que as nanofibras de PLLA alinhadas serão um bom scaffold para regeneração neuronal, uma vez que mimetiza o ambiente mecânico natural das células. Contudo, futuras experiências in vitro e in vivo são necessárias para comprovar a eficácia deste potencial scaffold. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07-17T00:00:00Z 2013-07-17 2015-07-11T12:00:00Z 2018-07-20T14:00:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/11630 TID:201563886 |
url |
http://hdl.handle.net/10773/11630 |
identifier_str_mv |
TID:201563886 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
publisher.none.fl_str_mv |
Universidade de Aveiro |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137531190575104 |