Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/20489 https://doi.org/10.1007/978-981-10-3156-4 |
Resumo: | Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best. |
id |
RCAP_e3fd9c19e5b02f372b48a2413626633f |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/20489 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet DecompositionimagehistologydiabeteswaveletpancreasSubtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.Springer2017-01-31T13:23:37Z2017-01-312016-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/20489http://hdl.handle.net/10174/20489https://doi.org/10.1007/978-981-10-3156-4porBandyopadhyay, T., Mitra, (Sretama), Mitra, (Shyamali), Rato, L., Das, N., Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition, Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, FICTA 2016, Springer, 2016.ndndndlmr@uevora.ptnd493Bandyopadhyay, TathagataMitra, SreetamaMitra, ShyamaliRato, LuísDas, Nibaraninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:10:26Zoai:dspace.uevora.pt:10174/20489Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:11:57.550369Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition |
title |
Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition |
spellingShingle |
Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition Bandyopadhyay, Tathagata image histology diabetes wavelet pancreas |
title_short |
Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition |
title_full |
Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition |
title_fullStr |
Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition |
title_full_unstemmed |
Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition |
title_sort |
Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition |
author |
Bandyopadhyay, Tathagata |
author_facet |
Bandyopadhyay, Tathagata Mitra, Sreetama Mitra, Shyamali Rato, Luís Das, Nibaran |
author_role |
author |
author2 |
Mitra, Sreetama Mitra, Shyamali Rato, Luís Das, Nibaran |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Bandyopadhyay, Tathagata Mitra, Sreetama Mitra, Shyamali Rato, Luís Das, Nibaran |
dc.subject.por.fl_str_mv |
image histology diabetes wavelet pancreas |
topic |
image histology diabetes wavelet pancreas |
description |
Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-01T00:00:00Z 2017-01-31T13:23:37Z 2017-01-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/20489 http://hdl.handle.net/10174/20489 https://doi.org/10.1007/978-981-10-3156-4 |
url |
http://hdl.handle.net/10174/20489 https://doi.org/10.1007/978-981-10-3156-4 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Bandyopadhyay, T., Mitra, (Sretama), Mitra, (Shyamali), Rato, L., Das, N., Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition, Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, FICTA 2016, Springer, 2016. nd nd nd lmr@uevora.pt nd 493 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136601586008064 |