Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition

Detalhes bibliográficos
Autor(a) principal: Bandyopadhyay, Tathagata
Data de Publicação: 2016
Outros Autores: Mitra, Sreetama, Mitra, Shyamali, Rato, Luís, Das, Nibaran
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/20489
https://doi.org/10.1007/978-981-10-3156-4
Resumo: Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.
id RCAP_e3fd9c19e5b02f372b48a2413626633f
oai_identifier_str oai:dspace.uevora.pt:10174/20489
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet DecompositionimagehistologydiabeteswaveletpancreasSubtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.Springer2017-01-31T13:23:37Z2017-01-312016-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/20489http://hdl.handle.net/10174/20489https://doi.org/10.1007/978-981-10-3156-4porBandyopadhyay, T., Mitra, (Sretama), Mitra, (Shyamali), Rato, L., Das, N., Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition, Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, FICTA 2016, Springer, 2016.ndndndlmr@uevora.ptnd493Bandyopadhyay, TathagataMitra, SreetamaMitra, ShyamaliRato, LuísDas, Nibaraninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:10:26Zoai:dspace.uevora.pt:10174/20489Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:11:57.550369Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
title Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
spellingShingle Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
Bandyopadhyay, Tathagata
image
histology
diabetes
wavelet
pancreas
title_short Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
title_full Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
title_fullStr Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
title_full_unstemmed Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
title_sort Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
author Bandyopadhyay, Tathagata
author_facet Bandyopadhyay, Tathagata
Mitra, Sreetama
Mitra, Shyamali
Rato, Luís
Das, Nibaran
author_role author
author2 Mitra, Sreetama
Mitra, Shyamali
Rato, Luís
Das, Nibaran
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Bandyopadhyay, Tathagata
Mitra, Sreetama
Mitra, Shyamali
Rato, Luís
Das, Nibaran
dc.subject.por.fl_str_mv image
histology
diabetes
wavelet
pancreas
topic image
histology
diabetes
wavelet
pancreas
description Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-01T00:00:00Z
2017-01-31T13:23:37Z
2017-01-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/20489
http://hdl.handle.net/10174/20489
https://doi.org/10.1007/978-981-10-3156-4
url http://hdl.handle.net/10174/20489
https://doi.org/10.1007/978-981-10-3156-4
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Bandyopadhyay, T., Mitra, (Sretama), Mitra, (Shyamali), Rato, L., Das, N., Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition, Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, FICTA 2016, Springer, 2016.
nd
nd
nd
lmr@uevora.pt
nd
493
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136601586008064