Probing the photoreactivity of aryl chlorides with oxygen
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/6588 |
Resumo: | Molecular oxygen was used to probe the mechanism of the phototransformation of chlorobenzene and 4-chloroanisole in organic solvents. Laser. ash photolysis, electron paramagnetic resonance and product distribution studies clarified the reaction mechanisms of these compounds under a wide range of conditions. The main primary photochemical reaction step is the homolytic cleavage of the C-Cl bond to produce a triplet radical pair in the solvent cage. In non-polar solvents hydrogen abstraction, after radical diffusion, leads to reduction. In polar solvents, in addition to H-abstraction, electron transfer within the caged radical pair occurs and leads to an ion pair (phenyl cation and Cl(-)). In the presence of oxygen, phenyl radicals can form phenylperoxyl radicals which have a bathochromically shifted absorption, thus making the homolytic cleavage visible by. ash photolysis. The peroxyl radicals can couple, leading to more polar compounds, or undergo back reaction to the phenyl radical. For concentrations of the aryl chlorides of higher than 10(-3) M, dimerization becomes an important transformation process and occurs after reaction of the transients with ground state molecules. In addition, excimer formation is postulated to be involved in the dimerization process. |
id |
RCAP_e425a102e280c7ac99f5ff7618f96996 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/6588 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Probing the photoreactivity of aryl chlorides with oxygenMolecular oxygen was used to probe the mechanism of the phototransformation of chlorobenzene and 4-chloroanisole in organic solvents. Laser. ash photolysis, electron paramagnetic resonance and product distribution studies clarified the reaction mechanisms of these compounds under a wide range of conditions. The main primary photochemical reaction step is the homolytic cleavage of the C-Cl bond to produce a triplet radical pair in the solvent cage. In non-polar solvents hydrogen abstraction, after radical diffusion, leads to reduction. In polar solvents, in addition to H-abstraction, electron transfer within the caged radical pair occurs and leads to an ion pair (phenyl cation and Cl(-)). In the presence of oxygen, phenyl radicals can form phenylperoxyl radicals which have a bathochromically shifted absorption, thus making the homolytic cleavage visible by. ash photolysis. The peroxyl radicals can couple, leading to more polar compounds, or undergo back reaction to the phenyl radical. For concentrations of the aryl chlorides of higher than 10(-3) M, dimerization becomes an important transformation process and occurs after reaction of the transients with ground state molecules. In addition, excimer formation is postulated to be involved in the dimerization process.Royal Society of ChemistrySapientiaSilva, José P. daJockusch, SteffenTurro, Nicholas J.2015-06-22T14:13:53Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/6588eng1474-905Xhttps://dx.doi.org/10.1039/b815039ginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:17:45Zoai:sapientia.ualg.pt:10400.1/6588Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:59:14.649731Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Probing the photoreactivity of aryl chlorides with oxygen |
title |
Probing the photoreactivity of aryl chlorides with oxygen |
spellingShingle |
Probing the photoreactivity of aryl chlorides with oxygen Silva, José P. da |
title_short |
Probing the photoreactivity of aryl chlorides with oxygen |
title_full |
Probing the photoreactivity of aryl chlorides with oxygen |
title_fullStr |
Probing the photoreactivity of aryl chlorides with oxygen |
title_full_unstemmed |
Probing the photoreactivity of aryl chlorides with oxygen |
title_sort |
Probing the photoreactivity of aryl chlorides with oxygen |
author |
Silva, José P. da |
author_facet |
Silva, José P. da Jockusch, Steffen Turro, Nicholas J. |
author_role |
author |
author2 |
Jockusch, Steffen Turro, Nicholas J. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Silva, José P. da Jockusch, Steffen Turro, Nicholas J. |
description |
Molecular oxygen was used to probe the mechanism of the phototransformation of chlorobenzene and 4-chloroanisole in organic solvents. Laser. ash photolysis, electron paramagnetic resonance and product distribution studies clarified the reaction mechanisms of these compounds under a wide range of conditions. The main primary photochemical reaction step is the homolytic cleavage of the C-Cl bond to produce a triplet radical pair in the solvent cage. In non-polar solvents hydrogen abstraction, after radical diffusion, leads to reduction. In polar solvents, in addition to H-abstraction, electron transfer within the caged radical pair occurs and leads to an ion pair (phenyl cation and Cl(-)). In the presence of oxygen, phenyl radicals can form phenylperoxyl radicals which have a bathochromically shifted absorption, thus making the homolytic cleavage visible by. ash photolysis. The peroxyl radicals can couple, leading to more polar compounds, or undergo back reaction to the phenyl radical. For concentrations of the aryl chlorides of higher than 10(-3) M, dimerization becomes an important transformation process and occurs after reaction of the transients with ground state molecules. In addition, excimer formation is postulated to be involved in the dimerization process. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z 2015-06-22T14:13:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/6588 |
url |
http://hdl.handle.net/10400.1/6588 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1474-905X https://dx.doi.org/10.1039/b815039g |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133214586961920 |