Computing semantic relatedness using DBPedia

Detalhes bibliográficos
Autor(a) principal: Leal, José Paulo
Data de Publicação: 2012
Outros Autores: Rodrigues, Vânia, Queirós, Ricardo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/5117
Resumo: Extracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terms using the knowledge base of DBpedia — a community effort to extract structured information from Wikipedia. Several approaches to extract semantic relatedness from Wikipedia using bag-of-words vector models are already available in the literature. The research presented in this paper explores a novel approach using paths on an ontological graph extracted from DBpedia. It is based on an algorithm for finding and weighting a collection of paths connecting concept nodes. This algorithm was implemented on a tool called Shakti that extract relevant ontological data for a given domain from DBpedia using its SPARQL endpoint. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are reported in this paper.
id RCAP_e4d430e540d70a632954b554c4da53ce
oai_identifier_str oai:recipp.ipp.pt:10400.22/5117
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Computing semantic relatedness using DBPediaSemantic similarityProcessing wikipedia dataOntology generationWeb recommendationExtracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terms using the knowledge base of DBpedia — a community effort to extract structured information from Wikipedia. Several approaches to extract semantic relatedness from Wikipedia using bag-of-words vector models are already available in the literature. The research presented in this paper explores a novel approach using paths on an ontological graph extracted from DBpedia. It is based on an algorithm for finding and weighting a collection of paths connecting concept nodes. This algorithm was implemented on a tool called Shakti that extract relevant ontological data for a given domain from DBpedia using its SPARQL endpoint. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are reported in this paper.This work is in part funded by the ERDF/COMPETE Programme and by FCT within project FCOMP-01-0124-FEDER-022701.Schloss DagstuhlRepositório Científico do Instituto Politécnico do PortoLeal, José PauloRodrigues, VâniaQueirós, Ricardo2014-10-24T11:50:16Z20122012-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.22/5117eng978-3-939897-40-82190-680710.4230/OASIcs.SLATE.2012.iinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-03T01:47:56Zoai:recipp.ipp.pt:10400.22/5117Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-03T01:47:56Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Computing semantic relatedness using DBPedia
title Computing semantic relatedness using DBPedia
spellingShingle Computing semantic relatedness using DBPedia
Leal, José Paulo
Semantic similarity
Processing wikipedia data
Ontology generation
Web recommendation
title_short Computing semantic relatedness using DBPedia
title_full Computing semantic relatedness using DBPedia
title_fullStr Computing semantic relatedness using DBPedia
title_full_unstemmed Computing semantic relatedness using DBPedia
title_sort Computing semantic relatedness using DBPedia
author Leal, José Paulo
author_facet Leal, José Paulo
Rodrigues, Vânia
Queirós, Ricardo
author_role author
author2 Rodrigues, Vânia
Queirós, Ricardo
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Leal, José Paulo
Rodrigues, Vânia
Queirós, Ricardo
dc.subject.por.fl_str_mv Semantic similarity
Processing wikipedia data
Ontology generation
Web recommendation
topic Semantic similarity
Processing wikipedia data
Ontology generation
Web recommendation
description Extracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terms using the knowledge base of DBpedia — a community effort to extract structured information from Wikipedia. Several approaches to extract semantic relatedness from Wikipedia using bag-of-words vector models are already available in the literature. The research presented in this paper explores a novel approach using paths on an ontological graph extracted from DBpedia. It is based on an algorithm for finding and weighting a collection of paths connecting concept nodes. This algorithm was implemented on a tool called Shakti that extract relevant ontological data for a given domain from DBpedia using its SPARQL endpoint. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are reported in this paper.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
2014-10-24T11:50:16Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/5117
url http://hdl.handle.net/10400.22/5117
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-939897-40-8
2190-6807
10.4230/OASIcs.SLATE.2012.i
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Schloss Dagstuhl
publisher.none.fl_str_mv Schloss Dagstuhl
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817542994810634240