Cyprinid swimming behaviour in response to turbulent flow

Detalhes bibliográficos
Autor(a) principal: Silva, Ana T.
Data de Publicação: 2012
Outros Autores: Katopodis, Christos, Santos, José M., Ferreira, Maria Teresa, Pinheiro, António T.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/8034
Resumo: Turbulence is a complex phenomenon which commonly occurs in river and fishway flows. It is a difficult subject to study, especially biologically, yet turbulence may affect fish movements and fish passage efficiency. Studies on quantifying fish responses to turbulence, particularly within fishways, are lacking. This study investigated the swimming behaviour of 140 adult Iberian barbel (Luciobarbus bocagei) of two size-classes (small fish: 15 ≤ TL < 25 cm, large fish: 25 < TL ≤ 35 cm) under turbulent flow conditions created by three submerged orifice arrangements in an experimental pool-type fishway: (i) offset orifices, (ii) straight orifices and (iii) straight orifices with a deflector bar of 0.5bo located at 0.2L from the inlet orifices, where bo is the width of the square orifices ranging from 0.18 to 0.23 m and L is the pool length (1.90 m). Water velocity and turbulence (turbulent kinetic energy, Reynolds shear stress, turbulence intensity and eddy size) were characterized using a 3D Acoustic Doppler Velocimeter (ADV) and were related with fish swimming behaviour. The influence of turbulent flow on the swimming behaviour of barbel was assessed through the number of successful fish passage attempts and associated passage times. The amount of time fish spent in a certain cell of the pool (transit time) was measured and related to hydraulic conditions. The highest rates of passage and the corresponding lowest times were found in experiments conducted with offset orifices. Although size-related behavioural responses to turbulence were observed, Reynolds shear stress appeared as one of the most important turbulence descriptors explaining fish transit time for both size-classes in experiments conducted with offset and straight orifices; furthermore, swimming behaviour of larger fish was found to be strongly affected by the eddies created, in particular by those of similar size to fish total length, which were mainly found in straight orifices with a deflector bar arrangement. The results provide valuable insights on barbel swimming behavioural responses to turbulence, which may help engineers and biologists to develop effective systems for the passage of this species and others with similar biomechanical capacities
id RCAP_e4ef88cfdb134c21c132d9bfebc7a3ed
oai_identifier_str oai:www.repository.utl.pt:10400.5/8034
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Cyprinid swimming behaviour in response to turbulent flowIberian barbelswimming behaviourpool-type fishwayturbulenceeddiesacoustic doppler velocimeterTurbulence is a complex phenomenon which commonly occurs in river and fishway flows. It is a difficult subject to study, especially biologically, yet turbulence may affect fish movements and fish passage efficiency. Studies on quantifying fish responses to turbulence, particularly within fishways, are lacking. This study investigated the swimming behaviour of 140 adult Iberian barbel (Luciobarbus bocagei) of two size-classes (small fish: 15 ≤ TL < 25 cm, large fish: 25 < TL ≤ 35 cm) under turbulent flow conditions created by three submerged orifice arrangements in an experimental pool-type fishway: (i) offset orifices, (ii) straight orifices and (iii) straight orifices with a deflector bar of 0.5bo located at 0.2L from the inlet orifices, where bo is the width of the square orifices ranging from 0.18 to 0.23 m and L is the pool length (1.90 m). Water velocity and turbulence (turbulent kinetic energy, Reynolds shear stress, turbulence intensity and eddy size) were characterized using a 3D Acoustic Doppler Velocimeter (ADV) and were related with fish swimming behaviour. The influence of turbulent flow on the swimming behaviour of barbel was assessed through the number of successful fish passage attempts and associated passage times. The amount of time fish spent in a certain cell of the pool (transit time) was measured and related to hydraulic conditions. The highest rates of passage and the corresponding lowest times were found in experiments conducted with offset orifices. Although size-related behavioural responses to turbulence were observed, Reynolds shear stress appeared as one of the most important turbulence descriptors explaining fish transit time for both size-classes in experiments conducted with offset and straight orifices; furthermore, swimming behaviour of larger fish was found to be strongly affected by the eddies created, in particular by those of similar size to fish total length, which were mainly found in straight orifices with a deflector bar arrangement. The results provide valuable insights on barbel swimming behavioural responses to turbulence, which may help engineers and biologists to develop effective systems for the passage of this species and others with similar biomechanical capacitiesElsevierRepositório da Universidade de LisboaSilva, Ana T.Katopodis, ChristosSantos, José M.Ferreira, Maria TeresaPinheiro, António T.2015-02-26T16:51:00Z20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/8034eng"Ecological Engineering". ISSN 0925-8574. 44 (2012) 314-328http://dx.doi.org/10.1016/j.ecoleng.2012.04.015info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:38:41Zoai:www.repository.utl.pt:10400.5/8034Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:55:06.876009Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Cyprinid swimming behaviour in response to turbulent flow
title Cyprinid swimming behaviour in response to turbulent flow
spellingShingle Cyprinid swimming behaviour in response to turbulent flow
Silva, Ana T.
Iberian barbel
swimming behaviour
pool-type fishway
turbulence
eddies
acoustic doppler velocimeter
title_short Cyprinid swimming behaviour in response to turbulent flow
title_full Cyprinid swimming behaviour in response to turbulent flow
title_fullStr Cyprinid swimming behaviour in response to turbulent flow
title_full_unstemmed Cyprinid swimming behaviour in response to turbulent flow
title_sort Cyprinid swimming behaviour in response to turbulent flow
author Silva, Ana T.
author_facet Silva, Ana T.
Katopodis, Christos
Santos, José M.
Ferreira, Maria Teresa
Pinheiro, António T.
author_role author
author2 Katopodis, Christos
Santos, José M.
Ferreira, Maria Teresa
Pinheiro, António T.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Silva, Ana T.
Katopodis, Christos
Santos, José M.
Ferreira, Maria Teresa
Pinheiro, António T.
dc.subject.por.fl_str_mv Iberian barbel
swimming behaviour
pool-type fishway
turbulence
eddies
acoustic doppler velocimeter
topic Iberian barbel
swimming behaviour
pool-type fishway
turbulence
eddies
acoustic doppler velocimeter
description Turbulence is a complex phenomenon which commonly occurs in river and fishway flows. It is a difficult subject to study, especially biologically, yet turbulence may affect fish movements and fish passage efficiency. Studies on quantifying fish responses to turbulence, particularly within fishways, are lacking. This study investigated the swimming behaviour of 140 adult Iberian barbel (Luciobarbus bocagei) of two size-classes (small fish: 15 ≤ TL < 25 cm, large fish: 25 < TL ≤ 35 cm) under turbulent flow conditions created by three submerged orifice arrangements in an experimental pool-type fishway: (i) offset orifices, (ii) straight orifices and (iii) straight orifices with a deflector bar of 0.5bo located at 0.2L from the inlet orifices, where bo is the width of the square orifices ranging from 0.18 to 0.23 m and L is the pool length (1.90 m). Water velocity and turbulence (turbulent kinetic energy, Reynolds shear stress, turbulence intensity and eddy size) were characterized using a 3D Acoustic Doppler Velocimeter (ADV) and were related with fish swimming behaviour. The influence of turbulent flow on the swimming behaviour of barbel was assessed through the number of successful fish passage attempts and associated passage times. The amount of time fish spent in a certain cell of the pool (transit time) was measured and related to hydraulic conditions. The highest rates of passage and the corresponding lowest times were found in experiments conducted with offset orifices. Although size-related behavioural responses to turbulence were observed, Reynolds shear stress appeared as one of the most important turbulence descriptors explaining fish transit time for both size-classes in experiments conducted with offset and straight orifices; furthermore, swimming behaviour of larger fish was found to be strongly affected by the eddies created, in particular by those of similar size to fish total length, which were mainly found in straight orifices with a deflector bar arrangement. The results provide valuable insights on barbel swimming behavioural responses to turbulence, which may help engineers and biologists to develop effective systems for the passage of this species and others with similar biomechanical capacities
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
2015-02-26T16:51:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/8034
url http://hdl.handle.net/10400.5/8034
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Ecological Engineering". ISSN 0925-8574. 44 (2012) 314-328
http://dx.doi.org/10.1016/j.ecoleng.2012.04.015
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131028744306688