New convolutions with Hermite weight functions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/30663 |
Resumo: | In this paper, we are working with convolutions on the positive half-line, for Lebesgue integrable functions. Six new convolutions are introduced. Factorization identities for these convolutions are derived, upon the use of Fourier sine and cosine transforms and Hermite functions. Such convolutions allowus to consider systems of convolution type equations on the half-line. Using two different methods, such systems of convolution integral equations will be analyzed. Conditions for their solvability will be considered and, under such conditions, their solutions are obtained. |
id |
RCAP_e50cb7090c53d5871ba3fdf6c322472d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/30663 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
New convolutions with Hermite weight functionsConvolution(Sine and cosine) integral transformsHermite functionsFactorization propertyIntegral equations of convolution typeIn this paper, we are working with convolutions on the positive half-line, for Lebesgue integrable functions. Six new convolutions are introduced. Factorization identities for these convolutions are derived, upon the use of Fourier sine and cosine transforms and Hermite functions. Such convolutions allowus to consider systems of convolution type equations on the half-line. Using two different methods, such systems of convolution integral equations will be analyzed. Conditions for their solvability will be considered and, under such conditions, their solutions are obtained.Springer2022-02-15T00:00:00Z2021-02-15T00:00:00Z2021-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/30663eng1017-060X10.1007/s41980-020-00496-1Castro, Luís PinheiroSilva, Anabela SousaTuan, Nguyen Minhinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:59:13Zoai:ria.ua.pt:10773/30663Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:41.805369Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
New convolutions with Hermite weight functions |
title |
New convolutions with Hermite weight functions |
spellingShingle |
New convolutions with Hermite weight functions Castro, Luís Pinheiro Convolution (Sine and cosine) integral transforms Hermite functions Factorization property Integral equations of convolution type |
title_short |
New convolutions with Hermite weight functions |
title_full |
New convolutions with Hermite weight functions |
title_fullStr |
New convolutions with Hermite weight functions |
title_full_unstemmed |
New convolutions with Hermite weight functions |
title_sort |
New convolutions with Hermite weight functions |
author |
Castro, Luís Pinheiro |
author_facet |
Castro, Luís Pinheiro Silva, Anabela Sousa Tuan, Nguyen Minh |
author_role |
author |
author2 |
Silva, Anabela Sousa Tuan, Nguyen Minh |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Castro, Luís Pinheiro Silva, Anabela Sousa Tuan, Nguyen Minh |
dc.subject.por.fl_str_mv |
Convolution (Sine and cosine) integral transforms Hermite functions Factorization property Integral equations of convolution type |
topic |
Convolution (Sine and cosine) integral transforms Hermite functions Factorization property Integral equations of convolution type |
description |
In this paper, we are working with convolutions on the positive half-line, for Lebesgue integrable functions. Six new convolutions are introduced. Factorization identities for these convolutions are derived, upon the use of Fourier sine and cosine transforms and Hermite functions. Such convolutions allowus to consider systems of convolution type equations on the half-line. Using two different methods, such systems of convolution integral equations will be analyzed. Conditions for their solvability will be considered and, under such conditions, their solutions are obtained. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-15T00:00:00Z 2021-02-15 2022-02-15T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/30663 |
url |
http://hdl.handle.net/10773/30663 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1017-060X 10.1007/s41980-020-00496-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137682429837312 |