Solving airline operations problems using specialized agents in a distributed multi-agent system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/6720 |
Resumo: | An airline schedule very rarely operates as planned. Problems related with aircrafts, crew members and passengers are common and the actions towards the solution of these problems are usually known as operations recovery. The Airline Operations Control Center (AOCC) tries to solve these problems with the minimum cost and satisfying all the required rules. In this paper we present the implementation of a Distributed Multi-Agent System (MAS) representing the existing roles in an AOCC, This MAS deals with several operational bases and for each type of operation problems it has several specialized software agents that implement different algorithms (heuristic, AI, OR, etc.), competing to find the best solution for each problem. We present a real case study taken from an AOCC where a crew recovery problem is solved. Computational results using a real airline schedule are presented, including a comparison with a solution for the same problem found by the human operators in the AOCC. We show that, even in simple problems and when comparing with solutions found by human operators, it is possible to find valid solutions, in less time and with a smaller cost. |
id |
RCAP_e514e31d1fe97c774e6396997f4ecf7a |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/6720 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Solving airline operations problems using specialized agents in a distributed multi-agent systemInteligência artificial, Ciências da computação e da informaçãoArtificial intelligence, Computer and information sciencesAn airline schedule very rarely operates as planned. Problems related with aircrafts, crew members and passengers are common and the actions towards the solution of these problems are usually known as operations recovery. The Airline Operations Control Center (AOCC) tries to solve these problems with the minimum cost and satisfying all the required rules. In this paper we present the implementation of a Distributed Multi-Agent System (MAS) representing the existing roles in an AOCC, This MAS deals with several operational bases and for each type of operation problems it has several specialized software agents that implement different algorithms (heuristic, AI, OR, etc.), competing to find the best solution for each problem. We present a real case study taken from an AOCC where a crew recovery problem is solved. Computational results using a real airline schedule are presented, including a comparison with a solution for the same problem found by the human operators in the AOCC. We show that, even in simple problems and when comparing with solutions found by human operators, it is possible to find valid solutions, in less time and with a smaller cost.20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/6720eng10.1007/978-3-540-88710-2_14António J. M. CastroEugénio Oliveirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:05:11Zoai:repositorio-aberto.up.pt:10216/6720Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:54:24.299033Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Solving airline operations problems using specialized agents in a distributed multi-agent system |
title |
Solving airline operations problems using specialized agents in a distributed multi-agent system |
spellingShingle |
Solving airline operations problems using specialized agents in a distributed multi-agent system António J. M. Castro Inteligência artificial, Ciências da computação e da informação Artificial intelligence, Computer and information sciences |
title_short |
Solving airline operations problems using specialized agents in a distributed multi-agent system |
title_full |
Solving airline operations problems using specialized agents in a distributed multi-agent system |
title_fullStr |
Solving airline operations problems using specialized agents in a distributed multi-agent system |
title_full_unstemmed |
Solving airline operations problems using specialized agents in a distributed multi-agent system |
title_sort |
Solving airline operations problems using specialized agents in a distributed multi-agent system |
author |
António J. M. Castro |
author_facet |
António J. M. Castro Eugénio Oliveira |
author_role |
author |
author2 |
Eugénio Oliveira |
author2_role |
author |
dc.contributor.author.fl_str_mv |
António J. M. Castro Eugénio Oliveira |
dc.subject.por.fl_str_mv |
Inteligência artificial, Ciências da computação e da informação Artificial intelligence, Computer and information sciences |
topic |
Inteligência artificial, Ciências da computação e da informação Artificial intelligence, Computer and information sciences |
description |
An airline schedule very rarely operates as planned. Problems related with aircrafts, crew members and passengers are common and the actions towards the solution of these problems are usually known as operations recovery. The Airline Operations Control Center (AOCC) tries to solve these problems with the minimum cost and satisfying all the required rules. In this paper we present the implementation of a Distributed Multi-Agent System (MAS) representing the existing roles in an AOCC, This MAS deals with several operational bases and for each type of operation problems it has several specialized software agents that implement different algorithms (heuristic, AI, OR, etc.), competing to find the best solution for each problem. We present a real case study taken from an AOCC where a crew recovery problem is solved. Computational results using a real airline schedule are presented, including a comparison with a solution for the same problem found by the human operators in the AOCC. We show that, even in simple problems and when comparing with solutions found by human operators, it is possible to find valid solutions, in less time and with a smaller cost. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/6720 |
url |
https://hdl.handle.net/10216/6720 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1007/978-3-540-88710-2_14 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135864323833857 |